Skip to main content
Log in

Characterizing perfusion defects in metastatic lymph nodes at an early stage using high-frequency ultrasound and micro-CT imaging

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

A perfusion defect in a metastatic lymph node (LN) can be visualized as a localized area of low contrast on contrast-enhanced CT, MRI or ultrasound images. Hypotheses for perfusion defects include abnormal hemodynamics in neovascular vessels or a decrease in blood flow in pre-existing blood vessels in the parenchyma due to compression by LN tumor growth. However, the mechanisms underlying perfusion defects in LNs during the early stage of LN metastasis have not been investigated. We show that tumor mass formation with very few microvessels was associated with a perfusion defect in a non-enlarged LN at the early stage of LN metastasis in a LN adenopathy mouse (LN size circa 10 mm). We found in a mouse model of LN metastasis, induced using non-keratinizing tumor cells, that during the formation of the perfusion defect in a non-enlarged LN, the number of blood vessels ≤ 50 μm in diameter decreased, while those of > 50 μm in diameter increased. The methods used were contrast-enhanced high-frequency ultrasound and contrast-enhanced micro-CT imaging systems, with a maximum spatial resolution of > 30 μm. Furthermore, we found no tumor angiogenesis or oxygen partial pressure (pO2) changes in the metastatic LN. Our results demonstrate that the perfusion defect appears to be a specific form of tumorigenesis in the LN, which is a vascular-rich organ. We anticipate that a perfusion defect on ultrasound, CT or MRI images will be used as an indicator of a non-enlarged metastatic LN at an early stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

HE:

Hematoxylin and eosin

LDDS:

Lymphatic drug delivery system

LN:

Lymph node

MXH10/Mo/lpr:

MXH10/Mo-lpr/lpr

pO2 :

Partial pressure of oxygen

PALN:

Proper axillary lymph node

SiLN:

Subiliac lymph node

SLN:

Sentinel lymph node

TEV:

Thoracoepigastric vein

UCAD:

Ultrasound contrast agent detection

cN0:

Clinical N0

References

  1. van den Brekel MW et al (1990) Cervical lymph node metastasis: assessment of radiologic criteria. Radiology 177(2):379–384

    PubMed  Google Scholar 

  2. Gillot L et al (2021) The pre-metastatic niche in lymph nodes: formation and characteristics. Cell Mol Life Sci 78(16):5987–6002

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Giuliano AE et al (2010) Locoregional recurrence after sentinel lymph node dissection with or without axillary dissection in patients with sentinel lymph node metastases: the American College of Surgeons Oncology Group Z0011 randomized trial. Ann Surg 252(3):426–432

    PubMed  Google Scholar 

  4. Brown M et al (2018) Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science 359(6382):1408–1411

    CAS  PubMed  Google Scholar 

  5. Pereira ER et al (2018) Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science 359(6382):1403–1407

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kodama T, Mori S, Nose M (2018) Tumor cell invasion from the marginal sinus into extranodal veins during early-stage lymph node metastasis can be a starting point for hematogenous metastasis. J Cancer Metastasis Treat 4:56

    CAS  Google Scholar 

  7. Takeda K, Mori S, Kodama T (2017) Study of fluid dynamics reveals direct communications between lymphatic vessels and venous blood vessels at lymph nodes of mice. J Immunol Methods 445: 1–9

    CAS  PubMed  Google Scholar 

  8. Shao L et al (2015) Communication between lymphatic and venous systems in mice. J Immunol Methods 424:100–105

    CAS  PubMed  Google Scholar 

  9. Li L et al (2013) Enhanced sonographic imaging to diagnose lymph node metastasis: importance of blood vessel volume and density. Cancer Res 73(7):2082–2092

    CAS  PubMed  Google Scholar 

  10. Li L et al (2013) Mouse model of lymph node metastasis via afferent lymphatic vessels for development of imaging modalities. PloS One 8(2):e55797

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kodama T et al (2016) New concept for the prevention and treatment of metastatic lymph nodes using chemotherapy administered via the lymphatic network. Sci Rep 6:32506

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fukumura R et al (2021) Study of the physicochemical properties of drugs suitable for administration using a lymphatic drug delivery system. Cancer Sci 112(5):1735–1745

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tada A et al (2017) Therapeutic effect of cisplatin given with a lymphatic drug delivery system on false-negative metastatic lymph nodes. Cancer Sci 108(11):2115–2121

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Fujii H et al (2019) Treatment of false-negative metastatic lymph nodes by a lymphatic drug delivery system with 5-fluorouracil. Cancer Med 8(5):2241–2251

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ohta T et al (2015) Five cases of axillary lymph node metastatic breast cancer on contrast-enhanced sonography. J Ultrasound Med 34(6):1131–1137

    PubMed  Google Scholar 

  16. Rubaltelli L et al (2004) Evaluation of lymph node perfusion using continuous mode harmonic ultrasonography with a second-generation contrast agent. J Ultrasound Med 23(6):829–836

    PubMed  Google Scholar 

  17. Nakamura T, Sumi M (2007) Nodal imaging in the neck: recent advances in US, CT and MR imaging of metastatic nodes. Eur Radiol 17(5):1235–1241

    PubMed  Google Scholar 

  18. Mori N et al (2019) Perfusion contrast-enhanced ultrasound to predict early lymph-node metastasis in breast cancer. Jpn J Radiol 37(2):145–153

    CAS  PubMed  Google Scholar 

  19. Rubaltelli L et al (2011) Contrast-enhanced ultrasound for characterizing lymph nodes with focal cortical thickening in patients with cutaneous melanoma. AJR Am J Roentgenol 196(1):W8–W12

    PubMed  Google Scholar 

  20. Rubaltelli L et al (2007) Automated quantitative evaluation of lymph node perfusion on contrast-enhanced sonography. AJR Am J Roentgenol 188(4):977–983

    PubMed  Google Scholar 

  21. Nia HT et al (2016) Solid stress and elastic energy as measures of tumour mechanopathology. Nat Biomed Eng 1:1–11

    Google Scholar 

  22. Morimoto Y et al (2006) Correlation between the incidence of central nodal necrosis in cervical lymph node metastasis and the extent of differentiation in oral squamous cell carcinoma. Dentomaxillofac Rad 35(1):18–23

    CAS  Google Scholar 

  23. Miura Y et al (2016) Early diagnosis of lymph node metastasis: importance of intranodal pressures. Cancer Sci 107(3):224–232

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mikada M et al (2017) Evaluation of the enhanced permeability and retention effect in the early stages of lymph node metastasis. Cancer Sci 108(5):846–852

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jeong HS et al (2015) Investigation of the lack of angiogenesis in the formation of lymph node metastases. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djv155

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kumar V et al (2012) Optical projection tomography reveals dynamics of HEV growth after immunization with protein plus CFA and features shared with HEVs in acute autoinflammatory lymphadenopathy. Front Immunol 3:282

    PubMed  PubMed Central  Google Scholar 

  27. Kelch ID et al (2015) Organ-wide 3D-imaging and topological analysis of the continuous microvascular network in a murine lymph node. Sci Rep 5:16534

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jafarnejad M et al (2019) Quantification of the whole lymph node vasculature based on tomography of the vessel corrosion casts. Sci Rep 9(1):13380

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Iwamura R et al (2019) Imaging of the mouse lymphatic sinus during early stage lymph node metastasis using intranodal lymphangiography with x-ray micro-computed tomography. Mol Imaging Biol 21(5):825–834

    PubMed  Google Scholar 

  30. Liu J et al (2019) Enhanced primary tumor penetration facilitates nanoparticle draining into lymph nodes after systemic injection for tumor metastasis inhibition. ACS Nano 13(8):8648–8658

    CAS  PubMed  Google Scholar 

  31. Metz S et al (2003) Detection and quantification of breast tumor necrosis with MR imaging: value of the necrosis-avid contrast agent Gadophrin-3. Acad Radiol 10(5):484–490

    PubMed  Google Scholar 

  32. Shao L et al (2013) Lymphatic mapping of mice with systemic lymphoproliferative disorder: usefulness as an inter-lymph node metastasis model of cancer. J Immunol Methods 389(1–2):69–78

    CAS  PubMed  Google Scholar 

  33. Van den Broeck W, Derore A, Simoens P (2006) Anatomy and nomenclature of murine lymph nodes: descriptive study and nomenclatory standardization in BALB/cAnNCrl mice. J Immunol Methods 312(1–2):12–19

    PubMed  Google Scholar 

  34. Ito K et al (2015) High-accuracy ultrasound contrast agent detection method for diagnostic ultrasound imaging systems. Ultrasound Med Biol 41(12):3120–3130

    PubMed  Google Scholar 

  35. Kodama T et al (2011) Volumetric and angiogenic evaluation of antitumor effects with acoustic liposome and high-frequency ultrasound. Cancer Res 71(22):6957–6964

    CAS  PubMed  Google Scholar 

  36. Kochi T et al (2013) Characterization of the arterial anatomy of the murine hindlimb: functional role in the design and understanding of ischemia models. PloS one 8(12):e84047

    PubMed  PubMed Central  Google Scholar 

  37. Petralia G et al (2013) Contrast-enhanced ultrasound sonography optimises the assessment of lymph nodes in oncology. Ecancermedicalscience 7:328

    PubMed  PubMed Central  Google Scholar 

  38. Ecanow JS et al (2013) Axillary staging of breast cancer: what the radiologist should know. Radiographics 33(6):1589–1612

    PubMed  Google Scholar 

  39. Dhawan I et al (2016) Detection of cervical lymph node micrometastasis and isolated tumor cells in oral squamous cell carcinoma using immunohistochemistry and serial sectioning. J Oral Maxillofac Pathol 20(3):436–444

    PubMed  PubMed Central  Google Scholar 

  40. Cabral H et al (2015) Systemic targeting of lymph node metastasis through the blood vascular system by using size-controlled nanocarriers. ACS Nano 9(5):4957–4967

    CAS  PubMed  Google Scholar 

  41. Morawitz J et al (2021) Comparison of nodal staging between CT, MRI, and [(18)F]-FDG PET/MRI in patients with newly diagnosed breast cancer. Eur J Nucl Med Mol Imaging. https://doi.org/10.1007/s00259-021-05502-0

    Article  PubMed  Google Scholar 

  42. Morales S, Engan K, Naranjo V (2021) Artificial intelligence in computational pathology—challenges and future directions. Digital Signal Process. https://doi.org/10.1016/j.dsp.2021.103196

    Article  Google Scholar 

  43. Großerueschkamp F et al (2021) Advances in digital pathology: from artificial intelligence to label-free imaging. Visc Med. https://doi.org/10.1159/000518494

    Article  Google Scholar 

  44. van der Laak J, Litjens G, Ciompi F (2021) Deep learning in histopathology: the path to the clinic. Nat Med 27(5):775–784

    PubMed  Google Scholar 

  45. Ait ichou J, Gauvin S, Faingold R (2021) Ultra-high-frequency ultrasound of superficial and musculoskeletal structures in the pediatric population. Pediatr Radiol 51(9):1748–1757

    PubMed  Google Scholar 

  46. Shao L et al (2015) Activation of latent metastases in the lung after resection of a metastatic lymph node in a lymph node metastasis mouse model. Biochem Biophys Res Commun 460(3):543–548

    CAS  PubMed  Google Scholar 

  47. Sukhbaatar A et al (2019) Lymph node resection induces the activation of tumor cells in the lungs. Cancer Sci 110(2):509–518

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sukhbaatar A et al (2019) Analysis of tumor vascularization in a mouse model of metastatic lung cancer. Sci Rep 9(1):16029

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by KAKENHI grants from the Japan Society for the Promotion of Science (20K20161 to Ariunbuyan Sukhbaatar; 18H03544 to Maya Sakamoto; and 19K22941, 20H00655, and 21K18319 to Tetsuya Kodama).

Author information

Authors and Affiliations

Authors

Contributions

Guarantors of the integrity of the entire study, TK; study concepts/study design or data acquisition or data analysis/interpretation, all authors; manuscript drafting or manuscript revision for important intellectual content, all authors; approval of the final version of the submitted manuscript, all authors; agrees to ensure any questions related to the work are appropriately resolved, all authors.

Corresponding author

Correspondence to Tetsuya Kodama.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Experiments were carried out under established guidelines and approved by the Institutional Animal Care and Use Committee of Tohoku University (2016BeA-019, 2016BeA-005, 2016BeLMo-003).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 459.0 kb)

Supplementary material 2 (DOCX 14.3 kb)

Supplementary material 3 (AVI 1365.3 kb)

Supplementary material 4 (AVI 790.1 kb)

Supplementary material 5 (AVI 992.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaki, T., Sukhbaatar, A., Mishra, R. et al. Characterizing perfusion defects in metastatic lymph nodes at an early stage using high-frequency ultrasound and micro-CT imaging. Clin Exp Metastasis 38, 539–549 (2021). https://doi.org/10.1007/s10585-021-10127-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-021-10127-6

Keywords

Navigation