Skip to main content

Advertisement

Log in

Radiation therapy-induced metastasis: radiobiology and clinical implications

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Radiation therapy is an effective means of achieving local control in a wide range of primary tumours, with the reduction in the size of the tumour(s) thought to mediate the observed reductions in metastatic spread in clinical trials. However, there is evidence to suggest that the complex changes induced by radiation in the tumour environment can also present metastatic risks that may counteract the long-term efficacy of the treatment. More than 25 years ago, several largely theoretical mechanisms by which radiation exposure might increase metastatic risk were postulated. These include the direct release of tumour cells into the circulation, systemic effects of tumour and normal tissue irradiation and radiation-induced changes in tumour cell phenotype. Here, we review the data that has since emerged to either support or refute these putative mechanisms focusing on how the unique radiobiology underlying modern radiotherapy modalities might alter these risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CTC:

Circulating tumour cell

NSCLC:

Non-small cell lung cancer

3D-CRT:

3D-conformal radiotherapy

IMRT:

Intensity-modulated radiotherapy

VMAT:

Volumetric modulated arc therapy

FFF:

Flattening filter-free

MRT:

Microbeam radiotherapy

TGF-β:

Transforming growth factor-β1

MMP:

Matrix metallo-proteinase

EMT:

Epithelial-to-mesenchymal transition

References

  1. Kaplan HS, Mury ED (1949) The effect of local roentgen irradiation on the biological behavior of a transplantable mouse carcinoma; increased frequency of pulmonary metastasis. J Natl Cancer Inst 9(5–6):407–413

    PubMed  CAS  Google Scholar 

  2. Ebos J (2015) Prodding the beast: assessing the impact of treatment-induced metastasis. Can Res 75(17):3427–3435. https://doi.org/10.1158/0008-5472.CAN-15-0308

    Article  CAS  Google Scholar 

  3. von Essen CF (1991) Radiation enhancement of metastasis: a review. Clin Exp Metast 9(2):77–104

    Article  Google Scholar 

  4. Martin OA, Anderson RL, Russell PA, Cox AR, Ivashkevich A, Swierczak A, Doherty JP, Jacobs D, Smith J, Siva S, Daly PE, Ball DL, Martin RF, MacManus MP (2014) Mobilization of viable tumor cells into the circulation during radiation therapy. Int J Radiat Oncol Biol Phys 88(2):395–403. https://doi.org/10.1016/j.ijrobp.2013.10.033

    Article  PubMed  Google Scholar 

  5. Martin OA, Anderson RL, Narayan K, MacManus MP (2017) Does the mobilization of circulating tumour cells during cancer therapy cause metastasis?. Nat Rev Clin Oncol 14:32–44

    Article  PubMed  CAS  Google Scholar 

  6. Baskar R, Lee K, Yeo R, Yeoh K-W (2012) Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9(3):193–199. https://doi.org/10.7150/ijms.3635

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bucci KM, Bevan A, Roach M (2005) Advances in radiation therapy: conventional to 3D, to IMRT, to 4D, and beyond. CA Cancer J Clin 55(2):117–134. https://doi.org/10.3322/canjclin.55.2.117

    Article  PubMed  Google Scholar 

  8. Allison RR, Patel RM, McLawhorn RA (2014) Radiation oncology: physics advances that minimize morbidity. Future Oncol 10(15):2329–2344. https://doi.org/10.2217/fon.14.176

    Article  PubMed  CAS  Google Scholar 

  9. Murray LJ, Thompson CM, Lilley J, Cosgrove V, Franks K, Sebag-Montefiore D, Henry AM (2015) Radiation-induced second primary cancer risks from modern external beam radiotherapy for early prostate cancer: impact of stereotactic ablative radiotherapy (SABR), volumetric modulated arc therapy (VMAT) and flattening filter free (FFF) radiotherapy. Phys Med Biol 60(3):1237–1257. https://doi.org/10.1088/0031-9155/60/3/1237

    Article  PubMed  Google Scholar 

  10. Irazola L, Ortiz-Seidel M, Velázquez S, García-Hernández M, Terrón J, Sánchez-Nieto B, Romero-Expósito M, Roselló J, Sánchez-Doblado F (2016) EP-1613: Comparison of peripheral doses associated to SBRT, VMAT, IMRT, FFF and 3D-CRT plans for lung cancer. Radiother Oncol 119. https://doi.org/10.1016/s0167-8140(16)32864-x

  11. Hall EJ, Wuu C-S (2003) Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Rad Oncol Biol Phys 56(1):83–88. https://doi.org/10.1016/S0360-3016(03)00073-7

    Article  Google Scholar 

  12. Lievens Y, Nulens A, Gaber M, Defraene G, Wever W, Stroobants S, den Heuvel F, Group L (2011) Intensity-modulated radiotherapy for locally advanced non–small-cell lung cancer: a dose-escalation planning study. Int J Rad Oncol Biol Phys 80(1):306–313. https://doi.org/10.1016/j.ijrobp.2010.06.025

    Article  Google Scholar 

  13. Guckenberger M, Kavanagh A, Partridge M (2012) Combining advanced radiotherapy technologies to maximize safety and tumor control probability in stage III non-small cell lung cancer. Strahlenther Onkol 188(10):894–900. https://doi.org/10.1007/s00066-012-0161-9

    Article  PubMed  CAS  Google Scholar 

  14. Chang AJ, Bradley JD (2010) Clinical perspectives on dose escalation for non–small-cell lung cancer. Clin Lung Cancer 11(5):299–302. doi:https://doi.org/10.3816/clc.2010.n.037

    Article  PubMed  Google Scholar 

  15. Murray D, McBride WH, Schwartz JL (2014) Radiation biology in the context of changing patterns of radiotherapy. Radiat Res 182(3):259–272. doi:https://doi.org/10.1667/RR13740.1

    Article  PubMed  CAS  Google Scholar 

  16. Hall EJ, Giaccia AJ (2012) Radiobiology for the radiologist, 7th edn. Wolters Kluwer Health, Philadelphia

    Google Scholar 

  17. Coutard H (1934) Principles of x ray therapy of malignant diseases. Lancet 224 (5784):1–8. https://doi.org/10.1016/S0140-6736(00)90085-0

    Article  Google Scholar 

  18. Nahum AE (2015) The radiobiology of hypofractionation. Clin Oncol 27(5):260–269. https://doi.org/10.1016/j.clon.2015.02.001

    Article  Google Scholar 

  19. Fowler JF, Welsh JS, Howard SP (2004) Loss of biological effect in prolonged fraction delivery. Int J Rad Oncol Biol Phys 59(1):242–249. https://doi.org/10.1016/j.ijrobp.2004.01.004

    Article  Google Scholar 

  20. Joiner MC, Mogili N, Marples B, Burmeister J (2010) Significant dose can be lost by extended delivery times in IMRT with X rays but not high-LET radiations. Med Phys 37(6):2457–2465. https://doi.org/10.1118/1.3425792

    Article  PubMed  CAS  Google Scholar 

  21. Lyhne NM, Primdahl H, Kristensen CA, Andersen E, Johansen J, Andersen LJ, Evensen J, Mortensen HR, Overgaard J (2015) The DAHANCA 6 randomized trial: effect of 6 vs. 5 weekly fractions of radiotherapy in patients with glottic squamous cell carcinoma. Radiother Oncol 117(1):91–98. https://doi.org/10.1016/j.radonc.2015.07.004

    Article  PubMed  Google Scholar 

  22. Saunders M, Dische S, Barrett A, Harvey A, Griffiths G, Palmar M (1999) Continuous, hyperfractionated, accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small cell lung cancer: mature data from the randomised multicentre trial. CHART Steer Comm Radiother Oncol 52(2):137–148

    Article  CAS  Google Scholar 

  23. Saunders M, Dische S, Barrett A, Harvey A, Gibson D, Parmar M (1997) Continuous hyperfractionated accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small-cell lung cancer: a randomised multicentre trial. CHART Steer Comm Lancet 350(9072):161–165

    CAS  Google Scholar 

  24. Thomas EM, Popple RA, Prendergast BM, Clark GM, Dobelbower MC, Fiveash JB (2013) Effects of flattening filter-free and volumetric-modulated arc therapy delivery on treatment efficiency. J Appl Clin Med Phys 14(6):155–166. https://doi.org/10.1120/jacmp.v14i6.4328

    Article  PubMed Central  Google Scholar 

  25. Spratt DE, Wu AJ, Adeseye V, Din SU, Shaikh F, Woo KM, Zhang Z, Foster A, Rosenzweig KE, Gewanter R, Huang J, Rimner A (2016) Recurrence patterns and second primary lung cancers after stereotactic body radiation therapy for early-stage non–small-cell lung cancer: implications for surveillance. Clin Lung Cancer 17(3):177–18300. https://doi.org/10.1016/j.cllc.2015.09.006

    Article  PubMed  Google Scholar 

  26. Verstegen NE, Lagerwaard FJ, Hashemi S, Dahele M, Slotman BJ, Senan S (2015) Patterns of disease recurrence after SABR for early stage non–small-cell lung cancer: optimizing follow-up schedules for salvage therapy. J Thorac Oncol 10(8):1195–1200. https://doi.org/10.1097/jto.0000000000000576

    Article  PubMed  Google Scholar 

  27. van den Berg LL, Klinkenberg TJ, Groen H, Widder J (2015) Patterns of recurrence and survival after surgery or stereotactic radiotherapy for early stage NSCLC. J Thorac Oncol 10(5):826–831. https://doi.org/10.1097/jto.0000000000000483

    Article  PubMed  Google Scholar 

  28. Kim M-S, Kim W, Park I, Kim H, Lee E, Jung J-H, Cho L, Song CW (2015) Radiobiological mechanisms of stereotactic body radiation therapy and stereotactic radiation surgery. Radiat Oncol J 33(4):265–275. https://doi.org/10.3857/roj.2015.33.4.265

    Article  PubMed  PubMed Central  Google Scholar 

  29. Brown MJ, Carlson DJ, Brenner DJ (2014) The tumor radiobiology of SRS and SBRT: are more than the 5 rs involved? Int J Radiat Oncol Biol Phys 88(2):254–262. https://doi.org/10.1016/j.ijrobp.2013.07.022

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shuryak I, Carlson DJ, Brown MJ, Brenner DJ (2015) High-dose and fractionation effects in stereotactic radiation therapy: analysis of tumor control data from 2965 patients. Radiother Oncol 115(3):327–334. https://doi.org/10.1016/j.radonc.2015.05.013

    Article  PubMed  Google Scholar 

  31. Girdhani S, Sachs R, Hlatky L (2013) Biological effects of proton radiation: what we know and don’t know. Radiat Res 181(6):257–272. doi:https://doi.org/10.1667/RR2839.1

    Article  CAS  Google Scholar 

  32. Durante M, Orecchia R, Loeffler JS (2017) Charged-particle therapy in cancer: clinical uses and future perspectives. Nat Rev Clin Oncol. https://doi.org/10.1038/nrclinonc.2017.30

    Article  PubMed  Google Scholar 

  33. Paganetti H (2014) Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol 59 (22). https://doi.org/10.1088/0031-9155/59/22/R419

  34. Hamada N, Imaoka T, Masunaga S-i, Ogata T, Okayasu R, Takahashi A, Kato TA, Kobayashi Y, Ohnishi T, Ono K, Shimada Y, Teshima T (2010) Recent advances in the biology of heavy-ion cancer therapy. J Radiat Res 51(4):365–383

    Article  PubMed  CAS  Google Scholar 

  35. Yoshioka Y, Suzuki O, Otani Y, Yoshida K, Nose T, Ogawa K (2014) High-dose-rate brachytherapy as monotherapy for prostate cancer: technique, rationale and perspective. J Contemp Brachyther 6(1):91–98. https://doi.org/10.5114/jcb.2014.42026

    Article  Google Scholar 

  36. Lohse I, Lang S, Hrbacek J, Scheidegger S, Bodis S, Macedo NS, Feng J, Lütolf UM, Zaugg K (2011) Effect of high dose per pulse flattening filter-free beams on cancer cell survival. Radiother Oncol 101(1):226–232. https://doi.org/10.1016/j.radonc.2011.05.072

    Article  PubMed  CAS  Google Scholar 

  37. Michaelidesová A, Vachelová J, Puchalska M, Brabcová K, Vondráček V, Sihver L, Davídková M (2017) Relative biological effectiveness in a proton spread-out Bragg peak formed by pencil beam scanning mode. Australas Phys Eng Sci Med. https://doi.org/10.1007/s13246-017-0540-8

    Article  PubMed  Google Scholar 

  38. Schüler E, Trovati S, King G, Lartey F, Rafat M, Villegas M, Praxel JA, Loo BW, Maxim PG (2017) Experimental platform for ultra-high dose rate FLASH irradiation of small animals using a clinical linear accelerator. Int J Radiat Oncol Biol Phys 97(1):195–203. https://doi.org/10.1016/j.ijrobp.2016.09.018

    Article  PubMed  CAS  Google Scholar 

  39. Bouchet A, Lemasson B, Duc G, Maisin C, Bräuer-Krisch E, Siegbahn E, Renaud L, Khalil E, Rémy C, Poillot C, Bravin A, Laissue JA, Barbier EL, Serduc R (2010) Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks. Int J Radiat Oncol Biol Phys 78(5):1503–1512. https://doi.org/10.1016/j.ijrobp.2010.06.021

    Article  PubMed  Google Scholar 

  40. Régnard P, Bräuer-Krisch E, Troprès I, Keyriläinen J, Bravin A, Duc G (2008) Enhancement of survival of 9L gliosarcoma bearing rats following intracerebral delivery of drugs in combination with microbeam radiation therapy. Eur J Radiol. https://doi.org/10.1016/j.ejrad.2008.04.049

    Article  PubMed  Google Scholar 

  41. Smyth LML, Senthi S, Crosbie JC, Rogers PAW (2016) The normal tissue effects of microbeam radiotherapy: what do we know, and what do we need to know to plan a human clinical trial? Int J Radiat Biol 92(6):302–311. https://doi.org/10.3109/09553002.2016.1154217

    Article  PubMed  CAS  Google Scholar 

  42. Rud A, Boye K, Fodstad Ø, Juell S, Jørgensen LH, Solberg S, Helland Å, Brustugun O, Mælandsmo G (2016) Detection of disseminated tumor cells in lymph nodes from patients with early stage non-small cell lung cancer. Diagn Pathol 11(1):50. https://doi.org/10.1186/s13000-016-0504-4

    Article  PubMed  PubMed Central  Google Scholar 

  43. Maruyama R, Sugio K, Mitsudomi T, Saitoh G, Ishida T, Sugimachi K (1997) Relationship between early recurrence and micrometastases in the lymph nodes of patients with stage I non-small-cell lung cancer. J Thorac Cardiovasc Surg 114(4):535–543. https://doi.org/10.1016/S0022-5223(97)70041-2

    Article  PubMed  CAS  Google Scholar 

  44. Osaki T, Oyama T, Gu C-D, Yamashita T, So T, Takenoyama M, Sugio K, Yasumoto K (2002) Prognostic impact of micrometastatic tumor cells in the lymph nodes and bone marrow of patients with completely resected stage I non-small-cell lung cancer. J Clin Oncol 20(13):2930–2936. https://doi.org/10.1200/jco.2002.11.011

    Article  PubMed  Google Scholar 

  45. Bouchard G, Therriault H, Bujold R, Saucier C, Paquette B (2017) Induction of interleukin-1β by mouse mammary tumor irradiation promotes triple negative breast cancer cells invasion and metastasis development. Int J Radiat Biol. https://doi.org/10.1080/09553002.2017.1270471

    Article  PubMed  Google Scholar 

  46. Woods GM, Bondra K, Chronowski C, Leasure J, Singh M, Hensley L, Cripe TP, Chakravarti A, Houghton PJ (2015) Radiation therapy may increase metastatic potential in alveolar rhabdomyosarcoma. Pediatr Blood Cancer 62(9):1550–1554. https://doi.org/10.1002/pbc.25516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Janni WJ, Rack B, Terstappen L, Pierga J-Y, Taran F-A, Fehm T, Hall C, de Groot MR, Bidard F-C, Friedl T, Fasching PA, Brucker SY, Pantel K, Lucci A (2016) Pooled analysis of the prognostic relevance of circulating tumor cells in primary breast cancer. Clin Cancer Res 22(10):2583–2593. https://doi.org/10.1158/1078-0432.CCR-15-1603

    Article  PubMed  CAS  Google Scholar 

  48. Suesskind D, Ulmer A, Schiebel U, Fierlbeck G, Spitzer B, Spitzer MS, Bartz-Schmidt KU, Grisanti S (2011) Circulating melanoma cells in peripheral blood of patients with uveal melanoma before and after different therapies and association with prognostic parameters: a pilot study. Acta Ophthalmol 89(1):17–24. https://doi.org/10.1111/j.1755-3768.2009.01617.x

    Article  PubMed  CAS  Google Scholar 

  49. Yu N, Zhou J, Cui F, Tang X (2015) Circulating tumor cells in lung cancer: detection methods and clinical applications. Lung. https://doi.org/10.1007/s00408-015-9697-7

    Article  PubMed  Google Scholar 

  50. Dorsey JF, Kao GD, MacArthur KM, Ju M, Steinmetz D, Wileyto PE, Simone CB, Hahn SM (2015) Tracking viable circulating tumor cells (CTCs) in the peripheral blood of non–small cell lung cancer (NSCLC) patients undergoing definitive radiation therapy: pilot study results. Cancer 121(1):139–149. https://doi.org/10.1002/cncr.28975

    Article  PubMed  Google Scholar 

  51. Masunaga S, Matsumoto Y, Kashino G, Hirayama R, Liu Y, Tanaka H, Sakurai Y, Suzuki M, Kinashi Y, Maruhashi A, Ono K (2010) Significance of manipulating tumour hypoxia and radiation dose rate in terms of local tumour response and lung metastatic potential, referring to the response of quiescent cell populations. Br J Radiol 83(993):776–784. https://doi.org/10.1259/bjr/57015642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Zhang Z, Wodzak M, Belzile O, Zhou H, Sishc B, Yan H, Stojadinovic S, Mason RP, Brekken RA, Chopra R, Story MD, Timmerman R, Saha D (2016) Effective rat lung tumor model for stereotactic body radiation therapy. Radiat Res 185(6):616–622. doi:https://doi.org/10.1667/RR14382.1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Tharmalingham H, Hoskin PJ (2017) The changing role of radiation therapy in the management of oligometastatic disease. Tech Innov Patient Support Radiat Oncol 1:13–15. https://doi.org/10.1016/j.tipsro.2017.01.001

    Article  Google Scholar 

  54. Blyth BJ, Sykes PJ (2011) Radiation-induced bystander effects: what are they, and how relevant are they to human radiation exposures? Radiat Res 181(6):139–157. https://doi.org/10.1667/rr2548.1

    Article  Google Scholar 

  55. Sprung CN, Ivashkevich A, Forrester HB, Redon CE, Georgakilas A, Martin OA (2015) Oxidative DNA damage caused by inflammation may link to stress-induced non-targeted effects. Cancer Lett 356(1):72–81. https://doi.org/10.1016/j.canlet.2013.09.008

    Article  PubMed  CAS  Google Scholar 

  56. Hong M (2014) Heavy ion-related bystander effects. Rend Lincei. https://doi.org/10.1007/s12210-013-0285-6

    Article  Google Scholar 

  57. Revesz L (1958) Effect of lethally damaged tumor cells upon the development of admixed viable cells. J Natl Cancer Inst 20(6):1157–1186

    Article  PubMed  CAS  Google Scholar 

  58. van den Brenk HA, Crowe MC, Stone MG (1977) Reactions of the tumour bed to lethally irradiated tumour cells, and the Révész effect. Br J Cancer 36(1):94–104. https://doi.org/10.1038/bjc.1977.159

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kuonen F, Secondini C, Rüegg C (2012) Molecular pathways: emerging pathways mediating growth, invasion, and metastasis of tumors progressing in an irradiated microenvironment. Clin Cancer Res 18(19):5196–5202. https://doi.org/10.1158/1078-0432.ccr-11-1758

    Article  PubMed  CAS  Google Scholar 

  60. Rüegg C, Monnier Y, Kuonen F, Imaizumi N (2011) Radiation-induced modifications of the tumor microenvironment promote metastasis. Bull Cancer 98(6):47–57. https://doi.org/10.1684/bdc.2011.1372

    Article  PubMed  Google Scholar 

  61. Vala I, Martins LR, Imaizumi N, Nunes RJ, Rino J, Kuonen F, Carvalho LM, Rüegg C, Grillo I, Barata J, Mareel M, Santos S (2010) Low doses of ionizing radiation promote tumor growth and metastasis by enhancing angiogenesis. PLoS ONE https://doi.org/10.1371/journal.pone.0011222

    Article  Google Scholar 

  62. Yarnold J (2009) Early and locally advanced breast cancer: diagnosis and treatment National Institute for Health and Clinical Excellence guideline 2009. Clin Oncol 21(3):159–160. https://doi.org/10.1016/j.clon.2008.12.008

    Article  CAS  Google Scholar 

  63. Fisher B, Anderson S, Bryant J, Margolese RG, Deutsch M, Fisher ER, Jeong JH, Wolmark N (2002) Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 347(16):1233–1241. https://doi.org/10.1056/NEJMoa022152

    Article  PubMed  Google Scholar 

  64. Siva S, Lobachevsky P, MacManus MP, Kron T, Mo ller A, Lobb RJ, Ventura J, Best N, Smith J, Ball D, Martin OA (2016) Radiotherapy for non-small cell lung cancer induces DNA damage response in both irradiated and out-of-field normal tissues. Clin Cancer Res 22(19):4817–4826. https://doi.org/10.1158/1078-0432.ccr-16-0138

    Article  PubMed  CAS  Google Scholar 

  65. Kaminski JM, Shinohara E, Summers J, Niermann KJ, Morimoto A, Brousal J (2005) The controversial abscopal effect. Cancer Treat Rev 31(3):159–172. https://doi.org/10.1016/j.ctrv.2005.03.004

    Article  PubMed  CAS  Google Scholar 

  66. Siva S, MacManus MP, Martin RF, Martin OA (2015) Abscopal effects of radiation therapy: A clinical review for the radiobiologist. Cancer Lett 356(1):82–90. https://doi.org/10.1016/j.canlet.2013.09.018

    Article  PubMed  CAS  Google Scholar 

  67. Camphausen K, Moses MA, Beecken WD, Khan MK, Folkman J, O’Reilly MS (2001) Radiation therapy to a primary tumor accelerates metastatic growth in mice. Cancer Res 61(5):2207–2211

    PubMed  CAS  Google Scholar 

  68. Redon CE, Dickey JS, Nakamura AJ, Kareva IG, Naf D, Nowsheen S, Kryston TB, Bonner WM, Georgakilas AG, Sedelnikova OA (2010) Tumors induce complex DNA damage in distant proliferative tissues in vivo. Proc Nat Acad Sci USA 107 (42):17992–17997. https://doi.org/10.1073/pnas.1008260107

    Article  PubMed  Google Scholar 

  69. Biswas S, Guix M, Rinehart C, Dugger TC, Chytil A, Moses HL, Freeman ML, Arteaga CL (2007) Inhibition of TGF-β with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. J Clin Investig 117(5):1305–1313. https://doi.org/10.1172/jci30740

    Article  PubMed  CAS  Google Scholar 

  70. Wu Y, Muldoon LL, Dickey D, Lewin SJ, Varallyay CG, Neuwelt EA (2009) Cyclophosphamide enhances human tumor growth in nude rat xenografted tumor models. Neoplasia 11(2):187–195. https://doi.org/10.1593/neo.81352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Yamauchi K, Yang M, Hayashi K, Jiang P, Yamamoto N, Tsuchiya H, Tomita K, Moossa AR, Bouvet M, Hoffman RM (2008) Induction of cancer metastasis by cyclophosphamide pretreatment of host mice: an opposite effect of chemotherapy. Can Res 68(2):516–520. https://doi.org/10.1158/0008-5472.can-07-3063

    Article  CAS  Google Scholar 

  72. Demaria S, Golden EB, Formenti SC (2015) Role of local radiation therapy in cancer immunotherapy. JAMA Oncol 1(9):1325–1332. https://doi.org/10.1001/jamaoncol.2015.2756

    Article  PubMed  Google Scholar 

  73. Sprung CN, Forrester HB, Siva S, Martin OA (2015) Immunological markers that predict radiation toxicity. Cancer Lett 368(2):191–197. https://doi.org/10.1016/j.canlet.2015.01.045

    Article  PubMed  CAS  Google Scholar 

  74. Matsunaga A, Ueda Y, Yamada S, Harada Y, Shimada H, Hasegawa M, Tsujii H, Ochiai T, Yonemitsu Y (2010) Carbon-ion beam treatment induces systemic antitumor immunity against murine squamous cell carcinoma. Cancer 116(15):3740–3748. https://doi.org/10.1002/cncr.25134

    Article  PubMed  CAS  Google Scholar 

  75. Durante M, Brenner DJ, Formenti SC (2016) Does heavy ion therapy work through the immune system? Int J Radiat Oncol Biol Phys 96(5):934–936. https://doi.org/10.1016/j.ijrobp.2016.08.037

    Article  PubMed  Google Scholar 

  76. Gameiro SR, Malamas AS, Bernstein MB, Tsang KY, Vassantachart A, Sahoo N, Tailor R, Pidikiti R, Guha CP, Hahn SM, Krishnan S, Hodge JW (2016) Tumor cells surviving exposure to proton or photon radiation share a common immunogenic modulation signature, rendering them more sensitive to T cell–mediated killing. Int J Radiat Oncol Biol Phys 95(1):120–130. https://doi.org/10.1016/j.ijrobp.2016.02.022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Song CW, Kim M-S, Cho CL, Dusenbery K, Sperduto PW (2014) Radiobiological basis of SBRT and SRS. Int J Clin Oncol 19(4):570–578. https://doi.org/10.1007/s10147-014-0717-z

    Article  PubMed  CAS  Google Scholar 

  78. Kim RK, Cui YH, Yoo KC, Kim IG, Lee M, Choi Y, Suh Y, Lee SJ (2015) Radiation promotes malignant phenotypes through SRC in breast cancer cells. Cancer Sci 106(1):78–85. https://doi.org/10.1111/cas.12574

    Article  PubMed  CAS  Google Scholar 

  79. Rofstad EK, Mathiesen B, Galappathi K (2004) Increased metastatic dissemination in human melanoma xenografts after subcurative radiation treatment: radiation-induced increase in fraction of hypoxic cells and hypoxia-induced up-regulation of urokinase-type plasminogen activator receptor. Cancer Res 64(1):13–18

    Article  PubMed  CAS  Google Scholar 

  80. Chung Y-L, Jian J, Cheng S, Tsai S, Chuang VP, Soong T, Lin Y-M, Horng C-F (2006) Sublethal irradiation induces vascular endothelial growth factor and promotes growth of hepatoma cells: implications for radiotherapy of hepatocellular carcinoma. Clin Cancer Res 12(9):2706–2715. https://doi.org/10.1158/1078-0432.CCR-05-2721

    Article  PubMed  CAS  Google Scholar 

  81. Feys L, Descamps B, Vanhove C, Vral A, Veldeman L, Vermeulen S, De Wagter C, Bracke M, De Wever O (2015) Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling. Oncotarget 6(29):26615–26632. https://doi.org/10.18632/oncotarget.5666

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827. https://doi.org/10.1038/nature04186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Ohuchida K, Mizumoto K, Murakami M, Qian L-W, Sato N, Nagai E, Matsumoto K, Nakamura T, Tanaka M (2004) Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Can Res 64(9):3215–3222. https://doi.org/10.1158/0008-5472.CAN-03-2464

    Article  CAS  Google Scholar 

  84. Paquette B, Baptiste C, Therriault H, Arguin G, Plouffe B, Lemay R (2007) In vitro irradiation of basement membrane enhances the invasiveness of breast cancer cells. Br J Cancer 97(11):1505–1512. https://doi.org/10.1038/sj.bjc.6604072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Vilalta M, Rafat M, Giaccia AJ, Graves EE (2014) Recruitment of circulating breast cancer cells is stimulated by radiotherapy. Cell Rep 8(2):402–409. https://doi.org/10.1016/j.celrep.2014.06.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Leroi N, Lallemand F, Coucke P, Noel A, Martinive P (2016) Impacts of ionizing radiation on the different compartments of the tumor microenvironment. Front Pharmacol 7:78. https://doi.org/10.3389/fphar.2016.00078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Takahashi Y, Teshima T, Kawaguchi N, Hamada Y, Mori S, Madachi A, Ikeda S, Mizuno H, Ogata T, Nojima K, Furusawa Y, Matsuura N (2003) Heavy ion irradiation inhibits in vitro angiogenesis even at sublethal dose. Cancer Res 63(14):4253–4257

    PubMed  CAS  Google Scholar 

  88. Girdhani S, Lamont C, Hahnfeldt P, Abdollahi A, Hlatky L (2012) Proton irradiation suppresses angiogenic genes and impairs cell invasion and tumor growth. Radiat Res. https://doi.org/10.1667/RR2724.1

    Article  PubMed  Google Scholar 

  89. Baskar R, Dai J, Wenlong N, Yeo R, Yeoh K-W (2014) Biological response of cancer cells to radiation treatment. Front Mol Biosci 1:24. https://doi.org/10.3389/fmolb.2014.00024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Martin OA, Yin X, Forrester HB, Sprung CN, Martin RF (2016) Potential strategies to ameliorate risk of radiotherapy-induced second malignant neoplasms. Semin Cancer Biol 37:65–76. https://doi.org/10.1016/j.semcancer.2015.12.003

    Article  PubMed  Google Scholar 

  91. McDermott N, Meunier A, Mooney B, Nortey G, Hernandez C, Hurley S, Lynam-Lennon N, Barsoom SH, Bowman KJ, Marples B, Jones GDD, Marignol L (2016) Fractionated radiation exposure amplifies the radioresistant nature of prostate cancer cells. Sci Rep 6(1):34796. https://doi.org/10.1038/srep34796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Pisco AO, Huang S (2015) Non-genetic cancer cell plasticity and therapy-induced stemness in tumour relapse: ‘what does not kill me strengthens me’. Br J Cancer 112(11):1725–1732. https://doi.org/10.1038/bjc.2015.146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Gong C, Gu R, Jin H, Sun Y, Li Z, Chen J, Wu G (2016) Lysyl oxidase mediates hypoxia-induced radioresistance in non-small cell lung cancer A549 cells. Exp Biol Med 241(4):387–395. https://doi.org/10.1177/1535370215609694

    Article  CAS  Google Scholar 

  94. Seo H, Bae S, Lee YS (2009) Radiation-induced cathepsin S is involved in radioresistance. Int J Cancer 124(8):1794–1801. https://doi.org/10.1002/ijc.24095

    Article  PubMed  CAS  Google Scholar 

  95. Tsutsumi K, Tsuda M, Yazawa N, Nakamura H, Ishihara S, Haga H, Yasuda M, Yamazaki R, Shirato H, Kawaguchi H, Nishioka T, Ohba Y (2009) Increased motility and invasiveness in tumor cells that survive 10 Gy irradiation. Cell Struct Funct 34(2):89–96. https://doi.org/10.1247/csf.09006

    Article  PubMed  CAS  Google Scholar 

  96. Kamlah F, Hänze J, Arenz A, Seay U, Hasan D, Juricko J, Bischoff B, Gottschald OR, Fournier C, Taucher-Scholz G, Scholz M, Seeger W, Engenhart-Cabillic R, Rose F (2011) Comparison of the effects of carbon ion and photon irradiation on the angiogenic response in human lung adenocarcinoma cells. Int J Radiat Oncol Biol Phys 80(5):1541–1549. https://doi.org/10.1016/j.ijrobp.2011.03.033

    Article  PubMed  CAS  Google Scholar 

  97. Fujita M, Yamada S, Imai T (2015) Irradiation induces diverse changes in invasive potential in cancer cell lines. Semin Cancer Biol 35:45–52. https://doi.org/10.1016/j.semcancer.2015.09.003

    Article  PubMed  CAS  Google Scholar 

  98. Park C-M, Park M-J, Kwak H-J, Lee H-C, Kim M-S, Lee S-H, Park I-C, Rhee C, Hong S-I (2006) Ionizing radiation enhances matrix metalloproteinase-2 secretion and invasion of glioma cells through Src/epidermal growth factor receptor–mediated p38/Akt and phosphatidylinositol 3-kinase/Akt signaling pathways. Can Res 66(17):8511–8519. https://doi.org/10.1158/0008-5472.can-05-4340

    Article  CAS  Google Scholar 

  99. Huguenin P, Beer KT, Allal A, Rufibach K, Friedli C, Davis JB, Pestalozzi B, Schmid S, Thoni A, Ozsahin M, Bernier J, Topfer M, Kann R, Meier UR, Thum P, Bieri S, Notter M, Lombriser N, Glanzmann C (2004) Concomitant cisplatin significantly improves locoregional control in advanced head and neck cancers treated with hyperfractionated radiotherapy. J Clin Oncol 22(23):4665–4673. https://doi.org/10.1200/JCO.2004.12.193

    Article  PubMed  CAS  Google Scholar 

  100. Bentzen J, Toustrup K, Eriksen JG, Primdahl H, Andersen LJ, Overgaard J (2015) Locally advanced head and neck cancer treated with accelerated radiotherapy, the hypoxic modifier nimorazole and weekly cisplatin. Results from the DAHANCA 18 phase II study. Acta Oncol 54(7):1001–1007. https://doi.org/10.3109/0284186X.2014.992547

    Article  PubMed  CAS  Google Scholar 

  101. Chemoradiotherapy for Cervical Cancer Meta-Analysis C (2008) Reducing uncertainties about the effects of chemoradiotherapy for cervical cancer: a systematic review and meta-analysis of individual patient data from 18 randomized trials. J Clin Oncol 26 (35):5802–5812. https://doi.org/10.1200/JCO.2008.16.4368

    Article  CAS  Google Scholar 

  102. Wild-Bode C, Weller M, Rimner A, Dichgans J, Wick W (2001) Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 61(6):2744–2750

    PubMed  CAS  Google Scholar 

  103. Qian L-W, Mizumoto K, Urashima T, Nagai E, Maehara N, Sato N, Nakajima M, Tanaka M (2002) Radiation-induced increase in invasive potential of human pancreatic cancer cells and its blockade by a matrix metalloproteinase inhibitor, CGS27023. Clin Cancer Res 8(4):1223–1227

    PubMed  CAS  Google Scholar 

  104. Moncharmont C, Levy A, Guy J-B, Falk AT, Guilbert M, Trone J-C, Alphonse G, Gilormini M, Ardail D, Toillon R-A, Rodriguez-Lafrasse C, Magné N (2014) Radiation-enhanced cell migration/invasion process: a review. Crit Rev Oncol 92(2):133–142. https://doi.org/10.1016/j.critrevonc.2014.05.006

    Article  Google Scholar 

  105. Ogata T, Teshima T, Kagawa K, Hishikawa Y, Takahashi Y, Kawaguchi A, Suzumoto Y, Nojima K, Furusawa Y, Matsuura N (2005) Particle irradiation suppresses metastatic potential of cancer cells. Cancer Res 65(1):113–120

    PubMed  CAS  Google Scholar 

  106. Rieken S, Habermehl D, Wuerth L, Brons S, Mohr A, Lindel K, Weber K, Haberer T, Debus J, Combs SE (2012) Carbon ion irradiation inhibits glioma cell migration through downregulation of integrin expression. Int J Radiat Oncol Biol Phys 83(1):394–399. https://doi.org/10.1016/j.ijrobp.2011.06.2004

    Article  PubMed  CAS  Google Scholar 

  107. Akino Y, Teshima T, Kihara A, Kodera-Suzumoto Y, Inaoka M, Higashiyama S, Furusawa Y, Matsuura N (2009) Carbon-ion beam irradiation effectively suppresses migration and invasion of human non–small-cell lung cancer cells. Int J Radiat Oncol Biol Phys 75(2):475–481. https://doi.org/10.1016/j.ijrobp.2008.12.090

    Article  PubMed  CAS  Google Scholar 

  108. Oweida A, Sharifi Z, Halabi H, Xu Y, Sabri S, Abdulkarim B (2016) Differential response to ablative ionizing radiation in genetically distinct non-small cell lung cancer cells. Cancer Biol Ther 17(4):390–399. https://doi.org/10.1080/15384047.2016.1139241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Rieken S, Rieber J, Brons S, Habermehl D, Rief H, Orschiedt L, Lindel K, Weber KJ, Debus J, Combs SE (2015) Radiation-induced motility alterations in medulloblastoma cells. J Radiat Res 56(3):430–436. https://doi.org/10.1093/jrr/rru120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Narang H, Kumar A, Bhat N, Pandey BN, Ghosh A (2015) Effect of proton and gamma irradiation on human lung carcinoma cells: Gene expression, cell cycle, cell death, epithelial–mesenchymal transition and cancer-stem cell trait as biological end points. Mutat Res 780:35–46. https://doi.org/10.1016/j.mrfmmm.2015.07.006

    Article  PubMed  CAS  Google Scholar 

  111. Zheng Q, Liu Y, Zhou HJ, Du YT, Zhang BP, Zhang J, Miao GY, Liu B, Zhang H (2015) X-ray radiation promotes the metastatic potential of tongue squamous cell carcinoma cells via modulation of biomechanical and cytoskeletal properties. Human Exp Toxicol 34(9):894–903. https://doi.org/10.1177/0960327114561664

    Article  CAS  Google Scholar 

  112. Ishihara S, Yasuda M, Nishioka T, Mizutani T, Kawabata K, Shirato H, Haga H (2013) Irradiation-tolerant lung cancer cells acquire invasive ability dependent on dephosphorylation of the myosin regulatory light chain. FEBS Lett 587(6):732–736. https://doi.org/10.1016/j.febslet.2013.01.055

    Article  PubMed  CAS  Google Scholar 

  113. Lee S, Cheng H, Yuan Y, Wu S (2014) Regulation of ionizing radiation-induced adhesion of breast cancer cells to fibronectin by Alpha5beta1 integrin. Radiat Res 181(6):650–658. https://doi.org/10.1667/RR13543.1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Bacco F, Luraghi P, Medico E, Reato G, Girolami F, Perera T, Gabriele P, Comoglio PM, Boccaccio C (2011) Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. JNCI 103(8):645–661. https://doi.org/10.1093/jnci/djr093

    Article  PubMed  CAS  Google Scholar 

  115. Shen CJ, Sharma A, Vuong D-V, Erler JT, Pruschy M, Broggini-Tenzer A (2014) Ionizing radiation induces tumor cell lysyl oxidase secretion. BMC Cancer 14(1):1–10. https://doi.org/10.1186/1471-2407-14-532

    Article  CAS  Google Scholar 

  116. Lee S, Jeong E, Ju M, Jeon H, Kim M, Kim C, Park H, Han S, Kang H (2016) Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer 16(1):10. https://doi.org/10.1186/s12943-016-0577-4

    Article  CAS  Google Scholar 

  117. Gomez-Casal R, Bhattacharya C, Ganesh N, Bailey L, Basse P, Gibson M, Epperly M, Levina V (2013) Non-small cell lung cancer cells survived ionizing radiation treatment display cancer stem cell and epithelial-mesenchymal transition phenotypes. Mol Cancer 12(1):1–13. https://doi.org/10.1186/1476-4598-12-94

    Article  CAS  Google Scholar 

  118. Ghisolfi L, Keates AC, Hu X, Lee D-k, Li CJ (2012) Ionizing radiation induces stemness in cancer cells. PLoS ONE 7 (8). https://doi.org/10.1371/journal.pone.0043628

  119. Brunner TB, Kunz-Schughart LA, Grosse-Gehling P, Baumann M (2012) Cancer stem cells as a predictive factor in radiotherapy. Sem Radiat Oncol 22(2):151–174. https://doi.org/10.1016/j.semradonc.2011.12.003

    Article  Google Scholar 

  120. Jung J-W, Hwang S-Y, Hwang J-S, Oh E-S, Park S, Han I-O (2007) Ionising radiation induces changes associated with epithelial-mesenchymal transdifferentiation and increased cell motility of A549 lung epithelial cells. Eur J Cancer 43(7):1214–1224. https://doi.org/10.1016/j.ejca.2007.01.034

    Article  PubMed  CAS  Google Scholar 

  121. Bae J-H, Park S-H, Yang J, Yang K, Yi J (2015) Stem cell-like gene expression signature identified in ionizing radiation-treated cancer cells. Gene 572(2):285–291. https://doi.org/10.1016/j.gene.2015.08.005

    Article  PubMed  CAS  Google Scholar 

  122. Yuan W, Yuan Y, Zhang T, Wu S (2015) Role of Bmi-1 in regulation of ionizing irradiation-induced epithelial-mesenchymal transition and migration of breast cancer cells. PLoS ONE. https://doi.org/10.1371/journal.pone.0118799

    Article  PubMed  PubMed Central  Google Scholar 

  123. Javaid S, Zhang J, Anderssen E, Black JC, Wittner BS, Tajima K, Ting DT, Smolen GA, Zubrowski M, Desai R, Maheswaran S, Ramaswamy S, Whetstine JR, Haber DA (2013) Dynamic chromatin modification sustains epithelial-mesenchymal transition following inducible expression of snail-1. Cell Rep 5(6):1679–1689. https://doi.org/10.1016/j.celrep.2013.11.034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. McDonald OG, Wu H, Timp W, Doi A, Feinberg AP (2011) Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nat Struct Mol Biol 18(8):867–874. https://doi.org/10.1038/nsmb.2084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, Pommier Y (2008) γH2AX and cancer. Nat Rev Cancer. https://doi.org/10.1038/nrc2523

    Article  PubMed  PubMed Central  Google Scholar 

  126. Weyemi U, Redon CE, Choudhuri R, Aziz T, Maeda D, Boufraqech M, Parekh PR, Sethi TK, Kasoji M, Abrams N, Merchant A, Rajapakse VN, Bonner WM (2016) The histone variant H2A.X is a regulator of the epithelial-mesenchymal transition. Nat Commun 7:10711. https://doi.org/10.1038/ncomms10711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Weyemi U, Redon CE, Sethi TK, Burrell AS, Jailwala P, Kasoji M, Abrams N, Merchant A, Bonner WM (2016) Twist1 and Slug mediate H2AX-regulated epithelial-mesenchymal transition in breast cells. Cell Cycle 15(18):2398–2404. https://doi.org/10.1080/15384101.2016.1198864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Weyemi U, Redon CE, Bonner WM (2016) H2AX and EMT: deciphering beyond DNA repair. Cell Cycle 15(10):1305–1306. https://doi.org/10.1080/15384101.2016.1160659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Park J, Jang S, Kang S, Park S, Hwang S-G, Kim W-J, Kang J, Um H-D (2012) Establishment of animal model for the analysis of cancer cell metastasis during radiotherapy. Radiat Oncol 7(1):1–11. https://doi.org/10.1186/1748-717X-7-153

    Article  Google Scholar 

  130. Zhang H, Luo H, Jiang Z, Yue J, Hou Q, Xie R, Wu S (2016) Fractionated irradiation-induced EMT-like phenotype conferred radioresistance in esophageal squamous cell carcinoma. J Radiat Res 57(4):370–380. https://doi.org/10.1093/jrr/rrw030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Meredith SL, Bryant JL, Babur M, Riddell PW, Behrouzi R, Williams KJ, White A (2016) Irradiation decreases the neuroendocrine biomarker pro-opiomelanocortin in small cell lung cancer cells in vitro and in vivo. PLOS ONE. https://doi.org/10.1371/journal.pone.0148404

    Article  PubMed  PubMed Central  Google Scholar 

  132. Carl C, Flindt A, Hartmann J, Dahlke M, Rades D, Dunst J, Lehnert H, Gieseler F, Ungefroren H (2016) Ionizing radiation induces a motile phenotype in human carcinoma cells in vitro through hyperactivation of the TGF-beta signaling pathway. Cell Mol Life Sci 73(2):427–443. https://doi.org/10.1007/s00018-015-2003-2

    Article  PubMed  CAS  Google Scholar 

  133. Pan Y, Zhou C, Yuan D, Zhang J, Shao C (2016) Radiation exposure promotes hepatocarcinoma cell invasion through epithelial mesenchymal transition mediated by H2S/CSE pathway. Radiat Res 185(1):96–105. https://doi.org/10.1667/RR14177.1

    Article  PubMed  CAS  Google Scholar 

  134. Vilalta M, Rafat M, Graves EE (2016) Effects of radiation on metastasis and tumor cell migration. Cell Mol Life Sci 73(16):2999–3007. https://doi.org/10.1007/s00018-016-2210-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Eberle F, Saulich MF, Leinberger FH, Seeger W, Engenhart-Cabillic R, Dikomey E, Hänze J, Hattar K, Subtil F (2016) Cancer cell motility is affected through 3D cell culturing and SCF/c-Kit pathway but not by X-irradiation. Radiother Oncol 119(3):537–543. https://doi.org/10.1016/j.radonc.2016.04.036

    Article  PubMed  Google Scholar 

  136. Das A, McDonald D, Lowe S, Bredlau A-L, Vanek K, Patel SJ, Cheshier S, Eskandari R (2016) Immunological low-dose radiation modulates the pediatric medulloblastoma antigens and enhances antibody-dependent cellular cytotoxicity. Child’s Nerv Syst 33(3):429–436. https://doi.org/10.1007/s00381-016-3305-x

    Article  Google Scholar 

  137. Roth B, Gibhardt CS, Becker P, Gebhardt M, Knoop J, Fournier C, Moroni A, Thiel G (2015) Low-dose photon irradiation alters cell differentiation via activation of hIK channels. Pflügers Archiv 467(8):1835–1849. https://doi.org/10.1007/s00424-014-1601-4

    Article  PubMed  CAS  Google Scholar 

  138. Weichselbaum RR, Liang H, Deng L, Fu YX (2017) Radiotherapy and immunotherapy: a beneficial liaison? Nat Rev Clin Oncol 14(6):365–379. https://doi.org/10.1038/nrclinonc.2016.211

    Article  PubMed  CAS  Google Scholar 

  139. Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, Fu YX (2014) Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin investig 124(2):687–695. https://doi.org/10.1172/JCI67313

    Article  PubMed  CAS  Google Scholar 

  140. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Yokoi T, Chiappori A, Lee KH, de Wit M, Cho BC, Bourhaba M, Quantin X, Tokito T, Mekhail T, Planchard D, Kim YC, Karapetis CS, Hiret S, Ostoros G, Kubota K, Gray JE, Paz-Ares L, de Castro Carpeno J, Wadsworth C, Melillo G, Jiang H, Huang Y, Dennis PA, Ozguroglu M, Investigators P (2017) Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med. https://doi.org/10.1056/NEJMoa1709937

    Article  PubMed  Google Scholar 

  141. Formenti SC, Demaria S (2013) Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst 105(4):256–265. https://doi.org/10.1093/jnci/djs629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Poleszczuk J, Luddy K, Chen L, Lee JK, Harrison LB, Czerniecki BJ, Soliman H, Enderling H (2017) Neoadjuvant radiotherapy of early-stage breast cancer and long-term disease-free survival. Breast Cancer Res 19(1):75. https://doi.org/10.1186/s13058-017-0870-1

    Article  PubMed  PubMed Central  Google Scholar 

  143. Choi JW, Kim JK, Yang YJ, Kim P, Yoon KH, Yun SH (2015) Urokinase exerts antimetastatic effects by dissociating clusters of circulating tumor cells. Cancer Res 75(21):4474–4482. https://doi.org/10.1158/0008-5472.CAN-15-0684

    Article  PubMed  CAS  Google Scholar 

  144. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458. https://doi.org/10.1038/nrc1098

    Article  PubMed  CAS  Google Scholar 

  145. Giancotti FG (2013) Mechanisms governing metastatic dormancy and reactivation. Cell 155(4):750–764. https://doi.org/10.1016/j.cell.2013.10.029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the assistance of Ms Diane Russo in preparation of the manuscript. This work was supported by a grant from the Australian National Health and Medical Research Council (NHMRC #1104139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin J. Blyth.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blyth, B.J., Cole, A.J., MacManus, M.P. et al. Radiation therapy-induced metastasis: radiobiology and clinical implications. Clin Exp Metastasis 35, 223–236 (2018). https://doi.org/10.1007/s10585-017-9867-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-017-9867-5

Keywords

Navigation