Skip to main content

Advertisement

Log in

Effects of radiation on metastasis and tumor cell migration

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

It is well known that tumor cells migrate from the primary lesion to distant sites to form metastases and that these lesions limit patient outcome in a majority of cases. However, the extent to which radiation influences this process and to which migration in turn alters radiation response remains controversial. There are preclinical and clinical reports showing that focal radiotherapy can both increase the development of distant metastasis, as well as that it can induce the regression of established metastases through the abscopal effect. More recently, preclinical studies have suggested that radiation can attract migrating tumor cells and may, thereby, facilitate tumor recurrence. In this review, we summarize these phenomena and their potential mechanisms of action, and evaluate their significance for modern radiation therapy strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  3. Park JK, Jang SJ, Kang SW, Park S, Hwang SG, Kim WJ et al (2012) Establishment of animal model for the analysis of cancer cell metastasis during radiotherapy. Radiat Oncol 7:153. doi:10.1186/1748-717X-7-153

    Article  PubMed  PubMed Central  Google Scholar 

  4. Durante M, Loeffler JS (2010) Charged particles in radiation oncology. Nat Rev Clin Oncol 7(1):37–43. doi:10.1038/nrclinonc.2009.183

    Article  PubMed  Google Scholar 

  5. Baskar R, Dai J, Wenlong N, Yeo R, Yeoh KW (2014) Biological response of cancer cells to radiation treatment. Front Mol Biosci 1:24. doi:10.3389/fmolb.2014.00024

    Article  PubMed  PubMed Central  Google Scholar 

  6. von Essen CF (1991) Radiation enhancement of metastasis: a review. Clin Exp Metastasis 9(2):77–104

    Article  Google Scholar 

  7. Camphausen K, Moses MA, Menard C, Sproull M, Beecken WD, Folkman J et al (2003) Radiation abscopal antitumor effect is mediated through p53. Cancer Res 63(8):1990–1993

    CAS  PubMed  Google Scholar 

  8. Derer A, Frey B, Fietkau R, Gaipl US (2015) Immune-modulating properties of ionizing radiation: rationale for the treatment of cancer by combination radiotherapy and immune checkpoint inhibitors. Cancer Immunol Immunother CII. doi:10.1007/s00262-015-1771-8

  9. Vilalta M, Rafat M, Giaccia AJ, Graves EE (2014) Recruitment of circulating breast cancer cells is stimulated by radiotherapy. Cell Rep. doi:10.1016/j.celrep.2014.06.011

    PubMed  PubMed Central  Google Scholar 

  10. Entschladen F, Drell TL, Lang K, Joseph J, Zaenker KS (2004) Tumour-cell migration, invasion, and metastasis: navigation by neurotransmitters. Lancet Oncol 5(4):254–258. doi:10.1016/S1470-2045(04)01431-7

    Article  CAS  PubMed  Google Scholar 

  11. Norton L, Massague J (2006) Is cancer a disease of self-seeding? Nat Med 12(8):875–878. doi:10.1038/nm0806-875

    Article  CAS  PubMed  Google Scholar 

  12. Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L et al (2009) Tumor self-seeding by circulating cancer cells. Cell 139(7):1315–1326. doi:10.1016/j.cell.2009.11.025

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kaplan HS, Murphy ED (1949) The effect of local roentgen irradiation on the biological behavior of a transplantable mouse carcinoma; increased frequency of pulmonary metastasis. J Natl Cancer Inst 9(5–6):407–413

    CAS  PubMed  Google Scholar 

  14. Sheldon PW, Fowler JF (1976) The effect of low-dose pre-operative X-irradiation of implanted mouse mammary carcinomas on local recurrence and metastasis. Br J Cancer 34(4):401–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Strong MS, Vaughan CW, Kayne HL, Aral IM, Ucmakli A, Feldman M et al (1978) A randomized trial of preoperative radiotherapy in cancer of the oropharynx and hypopharynx. Am J Surg 136(4):494–500

    Article  CAS  PubMed  Google Scholar 

  16. Anderson P, Dische S (1981) Local tumor control and the subsequent incidence of distant metastatic disease. Int J Radiat Oncol Biol Phys 7(12):1645–1648

    Article  CAS  PubMed  Google Scholar 

  17. Fagundes H, Perez CA, Grigsby PW, Lockett MA (1992) Distant metastases after irradiation alone in carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys 24(2):197–204

    Article  CAS  PubMed  Google Scholar 

  18. Martin OA, Anderson RL, Russell PA, Ashley Cox R, Ivashkevich A, Swierczak A et al (2014) Mobilization of viable tumor cells into the circulation during radiation therapy. Int J Radiat Oncol Biol Phys 88(2):395–403. doi:10.1016/j.ijrobp.2013.10.033

    Article  PubMed  Google Scholar 

  19. Dorsey JF, Kao GD, MacArthur KM, Ju M, Steinmetz D, Wileyto EP et al (2015) Tracking viable circulating tumor cells (CTCs) in the peripheral blood of non-small cell lung cancer (NSCLC) patients undergoing definitive radiation therapy: pilot study results. Cancer 121(1):139–149. doi:10.1002/cncr.28975

    Article  PubMed  Google Scholar 

  20. Ju M, Kao GD, Steinmetz D, Chandrasekaran S, Keefe SM, Guzzo TJ et al (2014) Application of a telomerase-based circulating tumor cell (CTC) assay in bladder cancer patients receiving postoperative radiation therapy: a case study. Cancer Biol Ther 15(6):683–687. doi:10.4161/cbt.28412

    Article  PubMed  PubMed Central  Google Scholar 

  21. Marin A, Martin M, Linan O, Alvarenga F, Lopez M, Fernandez L et al (2015) Bystander effects and radiotherapy. Rep Pract Oncol Radiother 20(1):12–21. doi:10.1016/j.rpor.2014.08.004

    Article  PubMed  Google Scholar 

  22. Mole RH (1953) Whole body irradiation; radiobiology or medicine? Br J Radiol 26(305):234–241. doi:10.1259/0007-1285-26-305-234

    Article  CAS  PubMed  Google Scholar 

  23. Strigari L, Mancuso M, Ubertini V, Soriani A, Giardullo P, Benassi M et al (2015) Abscopal effect of radiation therapy: interplay between radiation dose and p53 status. Int J Radiat Biol 91(3):294. doi:10.3109/09553002.2014.997514

    Article  CAS  PubMed  Google Scholar 

  24. Komarova EA, Diatchenko L, Rokhlin OW, Hill JE, Wang ZJ, Krivokrysenko VI et al (1998) Stress-induced secretion of growth inhibitors: a novel tumor suppressor function of p53. Oncogene 17(9):1089–1096. doi:10.1038/sj.onc.1202303

    Article  CAS  PubMed  Google Scholar 

  25. Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L et al (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 58(3):862–870. doi:10.1016/j.ijrobp.2003.09.012

    Article  PubMed  Google Scholar 

  26. Formenti SC, Demaria S (2009) Systemic effects of local radiotherapy. Lancet Oncol 10(7):718–726. doi:10.1016/S1470-2045(09)70082-8

    Article  PubMed  PubMed Central  Google Scholar 

  27. Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S et al (2012) Immunologic correlates of the abscopal effect in a patient with melanoma. New England J Med 366(10):925–931. doi:10.1056/NEJMoa1112824

    Article  CAS  Google Scholar 

  28. Siva S, MacManus MP, Martin RF, Martin OA (2015) Abscopal effects of radiation therapy: a clinical review for the radiobiologist. Cancer Lett 356(1):82–90. doi:10.1016/j.canlet.2013.09.018

    Article  CAS  PubMed  Google Scholar 

  29. Frankl O, Kimball CP (1914) Über die Beeinflussung von Mäusetumoren durch Röntgenstrahlen. Wien Klin Wochenschr 27:1448–1450

    Google Scholar 

  30. Stenström KW, Vermund H, Mosser GG, Marvin JF (1955) Effects of Roentgen irradiation on the tumor bed. I. The inhibiting action of local pretransplantation Roentgen irradiation (1500 r) on the growth of mouse mammary carcinoma. Radiat Res 2:180–191

    Article  PubMed  Google Scholar 

  31. Rofstad EK, Mathiesen B, Galappathi K (2004) Increased metastatic dissemination in human melanoma xenografts after subcurative radiation treatment: radiation-induced increase in fraction of hypoxic cells and hypoxia-induced up-regulation of urokinase-type plasminogen activator receptor. Cancer Res 64(1):13–18

    Article  CAS  PubMed  Google Scholar 

  32. Rofstad EK, Mathiesen B, Henriksen K, Kindem K, Galappathi K (2005) The tumor bed effect: increased metastatic dissemination from hypoxia-induced up-regulation of metastasis-promoting gene products. Cancer Res 65(6):2387–2396. doi:10.1158/0008-5472.CAN-04-3039

    Article  CAS  PubMed  Google Scholar 

  33. Lee EJ, Park HJ, Lee IJ, Kim WW, Ha SJ, Suh YG et al (2014) Inhibition of IL-17A suppresses enhanced-tumor growth in low dose pre-irradiated tumor beds. PLoS One 9(9):e106423. doi:10.1371/journal.pone.0106423

    Article  PubMed  PubMed Central  Google Scholar 

  34. Moncharmont C, Levy A, Guy JB, Falk AT, Guilbert M, Trone JC et al (2014) Radiation-enhanced cell migration/invasion process: a review. Crit Rev Oncol Hematol 92(2):133–142. doi:10.1016/j.critrevonc.2014.05.006

    Article  PubMed  Google Scholar 

  35. Young SD, Marshall RS, Hill RP (1988) Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumor cells. Proc Natl Acad Sci USA 85(24):9533–9537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brown JM (1999) The hypoxic cell: a target for selective cancer therapy—eighteenth Bruce F. Cain Memorial Award lecture. Cancer Res 59(23):5863–5870

    CAS  PubMed  Google Scholar 

  37. Sullivan R, Graham CH (2007) Hypoxia-driven selection of the metastatic phenotype. Cancer Metastasis Rev 26(2):319–331. doi:10.1007/s10555-007-9062-2

    Article  CAS  PubMed  Google Scholar 

  38. Moeller BJ, Cao Y, Li CY, Dewhirst MW (2004) Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5(5):429–441

    Article  CAS  PubMed  Google Scholar 

  39. Moeller BJ, Dreher MR, Rabbani ZN, Schroeder T, Cao Y, Li CY et al (2005) Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell 8(2):99–110. doi:10.1016/j.ccr.2005.06.016

    Article  CAS  PubMed  Google Scholar 

  40. Moeller BJ, Richardson RA, Dewhirst MW (2007) Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment. Cancer Metastasis Rev 26(2):241–248. doi:10.1007/s10555-007-9056-0

    Article  CAS  PubMed  Google Scholar 

  41. Rankin EB, Giaccia AJ (2008) The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ 15(4):678–685. doi:10.1038/cdd.2008.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Boss MK, Bristow R, Dewhirst MW (2014) Linking the history of radiation biology to the hallmarks of cancer. Radiat Res 181(6):561–577. doi:10.1667/RR13675.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Burroughs SK, Kaluz S, Wang D, Wang K, Van Meir EG, Wang B (2013) Hypoxia inducible factor pathway inhibitors as anticancer therapeutics. Future Med Chem 5(5):553–572. doi:10.4155/fmc.13.17

    Article  CAS  PubMed  Google Scholar 

  44. Thiery JP (2002) Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454. doi:10.1038/nrc822

    Article  CAS  PubMed  Google Scholar 

  45. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial–mesenchymal transitions in development and disease. Cell 139(5):871–890. doi:10.1016/j.cell.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  46. Barcellos-Hoff MH (1993) Radiation-induced transforming growth factor beta and subsequent extracellular matrix reorganization in murine mammary gland. Cancer Res 53(17):3880–3886

    CAS  PubMed  Google Scholar 

  47. Jung JW, Hwang SY, Hwang JS, Oh ES, Park S, Han IO (2007) Ionising radiation induces changes associated with epithelial–mesenchymal transdifferentiation and increased cell motility of A549 lung epithelial cells. Eur J Cancer 43(7):1214–1224. doi:10.1016/j.ejca.2007.01.034

    Article  CAS  PubMed  Google Scholar 

  48. Lopez-Novoa JM, Nieto MA (2009) Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med 1(6–7):303–314. doi:10.1002/emmm.200900043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yuan W, Yuan Y, Zhang T, Wu S (2015) Role of Bmi-1 in regulation of ionizing irradiation-induced epithelial–mesenchymal transition and migration of breast cancer cells. PLoS One 10(3):e0118799. doi:10.1371/journal.pone.0118799

    Article  PubMed  PubMed Central  Google Scholar 

  50. Biswas S, Guix M, Rinehart C, Dugger TC, Chytil A, Moses HL et al (2007) Inhibition of TGF-beta with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. J Clin Invest 117(5):1305–1313. doi:10.1172/JCI30740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A et al (2003) Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300(5622):1155–1159. doi:10.1126/science.1082504

    Article  CAS  PubMed  Google Scholar 

  52. Park HJ, Griffin RJ, Hui S, Levitt SH, Song CW (2012) Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat Res 177(3):311–327

    Article  CAS  PubMed  Google Scholar 

  53. Verhaegen F, Granton P, Tryggestad E (2011) Small animal radiotherapy research platforms. Phys Med Biol 56:R55–R83

    Article  PubMed  Google Scholar 

  54. Barcellos-Hoff MH, Park C, Wright EG (2005) Radiation and the microenvironment—tumorigenesis and therapy. Nat Rev Cancer 5(11):867–875. doi:10.1038/nrc1735

    Article  CAS  PubMed  Google Scholar 

  55. Yamanaka R, Tanaka R, Yoshida S (1993) Effects of irradiation on cytokine production in glioma cell lines. Neurol Med Chir 33(11):744–748

    Article  CAS  Google Scholar 

  56. Satoh E, Naganuma H, Sasaki A, Nagasaka M, Ogata H, Nukui H (1997) Effect of irradiation on transforming growth factor-beta secretion by malignant glioma cells. J Neurooncol 33(3):195–200

    Article  CAS  PubMed  Google Scholar 

  57. Raychaudhuri B, Vogelbaum MA (2011) IL-8 is a mediator of NF-kappaB induced invasion by gliomas. J Neurooncol 101(2):227–235. doi:10.1007/s11060-010-0261-2

    Article  CAS  PubMed  Google Scholar 

  58. Ivanov VN, Hei TK (2014) Radiation-induced glioblastoma signaling cascade regulates viability, apoptosis and differentiation of neural stem cells (NSC). Apoptosis Int J Program Cell Death 19(12):1736–1754. doi:10.1007/s10495-014-1040-x

    Article  CAS  Google Scholar 

  59. Wild-Bode C, Weller M, Rimner A, Dichgans J, Wick W (2001) Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 61(6):2744–2750

    CAS  PubMed  Google Scholar 

  60. Park CM, Park MJ, Kwak HJ, Lee HC, Kim MS, Lee SH et al (2006) Ionizing radiation enhances matrix metalloproteinase-2 secretion and invasion of glioma cells through Src/epidermal growth factor receptor-mediated p38/Akt and phosphatidylinositol 3-kinase/Akt signaling pathways. Cancer Res 66(17):8511–8519. doi:10.1158/0008-5472.CAN-05-4340

    Article  CAS  PubMed  Google Scholar 

  61. Badiga AV, Chetty C, Kesanakurti D, Are D, Gujrati M, Klopfenstein JD et al (2011) MMP-2 siRNA inhibits radiation-enhanced invasiveness in glioma cells. PLoS One 6(6):e20614. doi:10.1371/journal.pone.0020614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kozin SV, Kamoun WS, Huang Y, Dawson MR, Jain RK, Duda DG (2010) Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation. Cancer Res 70(14):5679–5685. doi:10.1158/0008-5472.CAN-09-4446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang SC, Yu CF, Hong JH, Tsai CS, Chiang CS (2013) Radiation therapy-induced tumor invasiveness is associated with SDF-1-regulated macrophage mobilization and vasculogenesis. PLoS One 8(8):e69182. doi:10.1371/journal.pone.0069182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Arscott WT, Tandle AT, Zhao S, Shabason JE, Gordon IK, Schlaff CD et al (2013) Ionizing radiation and glioblastoma exosomes: implications in tumor biology and cell migration. Transl Oncol 6(6):638–648

    Article  PubMed  PubMed Central  Google Scholar 

  65. Paquette B, Therriault H, Wagner JR (2013) Role of interleukin-1beta in radiation-enhancement of MDA-MB-231 breast cancer cell invasion. Radiat Res 180(3):292–298. doi:10.1667/RR3240.1

    Article  CAS  PubMed  Google Scholar 

  66. Yu YC, Yang PM, Chuah QY, Huang YH, Peng CW, Lee YJ et al (2013) Radiation-induced senescence in securin-deficient cancer cells promotes cell invasion involving the IL-6/STAT3 and PDGF-BB/PDGFR pathways. Sci Rep 3:1675. doi:10.1038/srep01675

    PubMed  PubMed Central  Google Scholar 

  67. Qian LW, Mizumoto K, Inadome N, Nagai E, Sato N, Matsumoto K et al (2003) Radiation stimulates HGF receptor/c-Met expression that leads to amplifying cellular response to HGF stimulation via upregulated receptor tyrosine phosphorylation and MAP kinase activity in pancreatic cancer cells. Int J Cancer 104(5):542–549. doi:10.1002/ijc.10997

    Article  CAS  PubMed  Google Scholar 

  68. Schweigerer L, Rave-Frank M, Schmidberger H, Hecht M (2005) Sublethal irradiation promotes invasiveness of neuroblastoma cells. Biochem Biophys Res Commun 330(3):982–988. doi:10.1016/j.bbrc.2005.03.068

    Article  CAS  PubMed  Google Scholar 

  69. Chargari C, Clemenson C, Martins I, Perfettini JL, Deutsch E (2013) Understanding the functions of tumor stroma in resistance to ionizing radiation: emerging targets for pharmacological modulation. Drug Resist Updat 16(1–2):10–21. doi:10.1016/j.drup.2013.01.001

    Article  CAS  PubMed  Google Scholar 

  70. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401. doi:10.1038/nrc1877

    Article  CAS  PubMed  Google Scholar 

  71. Ohuchida K, Mizumoto K, Murakami M, Qian LW, Sato N, Nagai E et al (2004) Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res 64(9):3215–3222

    Article  CAS  PubMed  Google Scholar 

  72. Zhou LY, Wang ZM, Gao YB, Wang LY, Zeng ZC (2012) Stimulation of hepatoma cell invasiveness and metastatic potential by proteins secreted from irradiated nonparenchymal cells. Int J Radiat Oncol Biol Phys 84(3):822–828. doi:10.1016/j.ijrobp.2012.01.011

    Article  CAS  PubMed  Google Scholar 

  73. Bouchard G, Bouvette G, Therriault H, Bujold R, Saucier C, Paquette B (2013) Pre-irradiation of mouse mammary gland stimulates cancer cell migration and development of lung metastases. Br J Cancer 109(7):1829–1838. doi:10.1038/bjc.2013.502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kamochi N, Nakashima M, Aoki S, Uchihashi K, Sugihara H, Toda S et al (2008) Irradiated fibroblast-induced bystander effects on invasive growth of squamous cell carcinoma under cancer-stromal cell interaction. Cancer Sci 99(12):2417–2427. doi:10.1111/j.1349-7006.2008.00978.x

    Article  CAS  PubMed  Google Scholar 

  75. Desmarais G, Fortin D, Bujold R, Wagner R, Mathieu D, Paquette B (2012) Infiltration of glioma cells in brain parenchyma stimulated by radiation in the F98/Fischer rat model. Int J Radiat Biol 88(8):565–574. doi:10.3109/09553002.2012.692495

    Article  CAS  PubMed  Google Scholar 

  76. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124(2):263–266. doi:10.1016/j.cell.2006.01.007

    Article  CAS  PubMed  Google Scholar 

  77. Russell JS, Brown JM (2013) The irradiated tumor microenvironment: role of tumor-associated macrophages in vascular recovery. Front Physiol 4:157. doi:10.3389/fphys.2013.00157

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sherman ML, Datta R, Hallahan DE, Weichselbaum RR, Kufe DW (1991) Regulation of tumor necrosis factor gene expression by ionizing radiation in human myeloid leukemia cells and peripheral blood monocytes. J Clin Invest. 87(5):1794–1797. doi:10.1172/JCI115199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. O’Brien-Ladner A, Nelson ME, Kimler BF, Wesselius LJ (1993) Release of interleukin-1 by human alveolar macrophages after in vitro irradiation. Radiat Res 136(1):37–41

    Article  PubMed  Google Scholar 

  80. Iwamoto KS, McBride WH (1994) Production of 13-hydroxyoctadecadienoic acid and tumor necrosis factor-alpha by murine peritoneal macrophages in response to irradiation. Radiat Res 139(1):103–108

    Article  CAS  PubMed  Google Scholar 

  81. Nemoto K, Ishihara H, Tanaka I, Suzuki G, Tsuneoka K, Yoshida K et al (1995) Expression of IL-1 beta mRNA in mice after whole body X-irradiation. J Radiat Res 36(2):125–133

    Article  CAS  PubMed  Google Scholar 

  82. Thornton SC, Walsh BJ, Bennett S, Robbins JM, Foulcher E, Morgan GW et al (1996) Both in vitro and in vivo irradiation are associated with induction of macrophage-derived fibroblast growth factors. Clin Exp Immunol 103(1):67–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim SH, Lim DJ, Chung YG, Cho TH, Lim SJ, Kim WJ et al (2002) Expression of TNF-alpha and TGF-beta 1 in the rat brain after a single high-dose irradiation. J Korean Med Sci 17(2):242–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Timmerman R, Paulus R, Galvin J, Michalski J, Straube W, Bradley J et al (2010) Stereotactic body radiation therapy for inoperable early stage lung cancer. J Am Med Assoc 303(11):1070–1076

    Article  CAS  Google Scholar 

  85. Hiniker SM, Chen DS, Knox SJ (2012) Abscopal effect in a patient with melanoma. N Engl J Med 366(21):2035. doi:10.1056/NEJMc1203984#SA1 (author reply-6)

    Article  CAS  PubMed  Google Scholar 

  86. Sosa MS, Bragado P, Aguirre-Ghiso JA (2014) Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer 14(9):611–622. doi:10.1038/nrc3793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Golden EB, Chhabra A, Chachoua A, Adams S, Donach M, Fenton-Kerimian M et al (2015) Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol 16(7):795–803. doi:10.1016/S1470-2045(15)00054-6

    Article  CAS  PubMed  Google Scholar 

  88. Hall EJ, Giaccia AJ (2006) Radiobiology for the radiologist, 6th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  89. Saunders M, Dische S, Barrett A, Harvey A, Gibson D, Parmar M (1997) Continuous hyperfractionated accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small-cell lung cancer: a randomised multicentre trial. CHART Steering Committee. Lancet 350(9072):161–165

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Institutes of Health (P01 CA67166, R01 CA197136) and the California Breast Cancer Research Program (19IB-0106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward E. Graves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilalta, M., Rafat, M. & Graves, E.E. Effects of radiation on metastasis and tumor cell migration. Cell. Mol. Life Sci. 73, 2999–3007 (2016). https://doi.org/10.1007/s00018-016-2210-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2210-5

Keywords

Navigation