Skip to main content

Advertisement

Log in

A spontaneous metastasis model reveals the significance of claudin-9 overexpression in lung cancer metastasis

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Metastasis causes most cancer related mortality but the mechanisms governing metastatic dissemination are poorly defined. Metastasis involves egression of cancer cells from the primary tumors, their survival in circulation and colonization at the secondary sites. Cancer cell egression from the primary tumor is the least defined process of metastasis as experimental metastasis models directly seed cancer cells in circulation, thus bypassing this crucial step. Here, we developed a spontaneous metastasis model that retains the egression step of metastasis. By repeated in vivo passaging of the poorly metastatic Lewis lung carcinoma (3LL) cells, we generated a cell line (p-3LL) that readily metastasizes to lungs and liver from subcutaneous (s.c.) tumors. Interestingly, when injected intravenously, 3LL and p-3LL cells showed a similar frequency of metastasis. This suggests enhanced egression of p-3LL cells may underlie the enhanced metastatic spread from primary tumors. Microarray analysis of 3LL and p-3LL cells as well as the primary tumors derived from these cells revealed altered expression of several genes including significant upregulation of a tight junction protein, claudin-9. Increased expression of claudin-9 was confirmed in both p-3LL cells and tumors derived from these cells. Knockdown of claudin-9 expression in p-3LL cells by si-RNA significantly reduced their motility, invasiveness in vitro and metastasis in vivo. Conversely, transient overexpression of claudin-9 in 3LL cells enhanced their motility. These results suggest an essential role for claudin-9 in promoting lung cancer metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LLC/3LL cells:

Lewis lung carcinoma

s.c.:

Subcutaneous

i.v.:

Intravenous

p-3LL:

Passaged 3LL cells

EMT:

Epithelial to mesenchymal trans-differentiation

References

  1. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science (New York, NY) 331(6024):1559–1564. doi:10.1126/science.1203543

    Article  CAS  Google Scholar 

  2. Kagohashi K, Satoh H, Ishikawa H, Ohtsuka M, Sekizawa K (2003) Liver metastasis at the time of initial diagnosis of lung cancer. Med Oncol (Northwood, London, England) 20(1):25–28. doi:10.1385/mo:20:1:25

    Article  Google Scholar 

  3. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clinic Proc 83(5):584–594. doi:10.4065/83.5.584

    Article  Google Scholar 

  4. Balgkouranidou I, Liloglou T, Lianidou ES (2013) Lung cancer epigenetics: emerging biomarkers. Biomarkers Med 7(1):49–58. doi:10.2217/bmm.12.111

    Article  CAS  Google Scholar 

  5. Hirsch FR, Franklin WA, Gazdar AF, Bunn PA Jr (2001) Early detection of lung cancer: clinical perspectives of recent advances in biology and radiology. Clin Cancer Res 7(1):5–22

    CAS  PubMed  Google Scholar 

  6. Grandic L, Pogorelic Z, Banovic J, Forempoher G, Ilic N, Perko Z (2010) Atypical non-small cell lung cancer presentation: inguinal lymph node metastases as the first sign of disease relapse. Acta clinica Croatica 49(4):441–444

    PubMed  Google Scholar 

  7. Hofmann HS, Hansen G, Richter G, Taege C, Simm A, Silber RE, Burdach S (2005) Matrix metalloproteinase-12 expression correlates with local recurrence and metastatic disease in non-small cell lung cancer patients. Clin Cancer Res 11(3):1086–1092

    CAS  PubMed  Google Scholar 

  8. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9(4):239–252. doi:10.1038/nrc2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78. doi:10.1038/nrc1256

    Article  CAS  PubMed  Google Scholar 

  10. Kang Y, Massague J (2004) Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 118(3):277–279. doi:10.1016/j.cell.2004.07.011

    Article  CAS  PubMed  Google Scholar 

  11. Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9(4):265–273. doi:10.1038/nrc2620

    Article  CAS  PubMed  Google Scholar 

  12. Scheel C, Weinberg RA (2012) Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol 22(5–6):396–403. doi:10.1016/j.semcancer.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  13. McAllister SS, Weinberg RA (2014) The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat Cell Biol 16(8):717–727. doi:10.1038/ncb3015

    Article  CAS  PubMed  Google Scholar 

  14. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Investig 119(6):1420–1428. doi:10.1172/jci39104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715. doi:10.1016/j.cell.2008.03.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xiao D, He J (2010) Epithelial mesenchymal transition and lung cancer. J Thorac Disease 2(3):154–159. doi:10.3978/j.issn.2072-1439.2010.02.03.7

    CAS  Google Scholar 

  17. Saxena M, Christofori G (2013) Rebuilding cancer metastasis in the mouse. Mol Oncol 7(2):283–296. doi:10.1016/j.molonc.2013.02.009

    Article  CAS  PubMed  Google Scholar 

  18. Farago AF, Snyder EL, Jacks T (2012) SnapShot: lung cancer models. Cell 149 (1):246–246. e241. doi:10.1016/j.cell.2012.03.015

  19. Rapp UR, Korn C, Ceteci F, Karreman C, Luetkenhaus K, Serafin V, Zanucco E, Castro I, Potapenko T (2009) MYC is a metastasis gene for non-small-cell lung cancer. PLoS ONE 4(6):e6029. doi:10.1371/journal.pone.0006029

    Article  PubMed  PubMed Central  Google Scholar 

  20. Elkin M, Vlodavsky I (2001) Tail vein assay of cancer metastasis. Current protocols in cell biology/editorial board, Juan S Bonifacino (et al) Chapter 19: Unit 19.12. doi:10.1002/0471143030.cb1902s12

  21. Khanna C, Hunter K (2005) Modeling metastasis in vivo. Carcinogenesis 26(3):513–523. doi:10.1093/carcin/bgh261

    Article  CAS  PubMed  Google Scholar 

  22. Lavilla-Alonso S, Bauer MM, Abo-Ramadan U, Ristimaki A, Halavaara J, Desmond RA, Wang D, Escutenaire S, Ahtiainen L, Saksela K, Tatlisumak T, Hemminki A, Pesonen S (2012) Macrophage metalloelastase (MME) as adjuvant for intra-tumoral injection of oncolytic adenovirus and its influence on metastases development. Cancer Gene Ther 19(2):126–134. doi:10.1038/cgt.2011.76

    Article  CAS  PubMed  Google Scholar 

  23. Leng X, Ding T, Lin H, Wang Y, Hu L, Hu J, Feig B, Zhang W, Pusztai L, Symmans WF, Wu Y, Arlinghaus RB (2009) Inhibition of lipocalin 2 impairs breast tumorigenesis and metastasis. Cancer Res 69(22):8579–8584. doi:10.1158/0008-5472.can-09-1934

    Article  CAS  PubMed  Google Scholar 

  24. Yi F, Jaffe R, Prochownik EV (2003) The CCL6 chemokine is differentially regulated by c-Myc and L-Myc, and promotes tumorigenesis and metastasis. Cancer Res 63(11):2923–2932

    CAS  PubMed  Google Scholar 

  25. Hartsock A, Nelson WJ (2008) Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta 1778(3):660–669. doi:10.1016/j.bbamem.2007.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Singh AB, Dhawan P (2015) Claudins and cancer: fall of the soldiers entrusted to protect the gate and keep the barrier intact. Semin Cell Develop Biol. doi:10.1016/j.semcdb.2015.05.001

    Google Scholar 

  27. Schlingmann B, Molina SA, Koval M (2015) Claudins: Gatekeepers of lung epithelial function. Semin Cell Develop Biol. doi:10.1016/j.semcdb.2015.04.009

    Google Scholar 

  28. Abuazza G, Becker A, Williams SS, Chakravarty S, Truong HT, Lin F, Baum M (2006) Claudins 6, 9, and 13 are developmentally expressed renal tight junction proteins. Am J Physiol Renal Physiol 291(6):F1132–1141. doi:10.1152/ajprenal.00063.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakano Y, Kim SH, Kim HM, Sanneman JD, Zhang Y, Smith RJ, Marcus DC, Wangemann P, Nessler RA, Banfi B (2009) A claudin-9-based ion permeability barrier is essential for hearing. PLoS Genet 5(8):e1000610. doi:10.1371/journal.pgen.1000610

    Article  PubMed  PubMed Central  Google Scholar 

  30. Satpathy SR, Jala VR, Bodduluri SR, Krishnan E, Hegde B, Hoyle GW, Fraig M, Luster AD, Haribabu B (2015) Crystalline silica-induced leukotriene B4-dependent inflammation promotes lung tumour growth. Nat Commun 6:7064. doi:10.1038/ncomms8064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif) 25 (4):402–408. doi:10.1006/meth.2001.1262

  32. Sharma RK, Chheda Z, Jala VR, Haribabu B (2013) Expression of leukotriene B(4) receptor-1 on CD8(+) T cells is required for their migration into tumors to elicit effective antitumor immunity. Journal of immunology (Baltimore, Md: 1950) 191 (6):3462–3470. doi:10.4049/jimmunol.1300967

  33. Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M, Loda M, Weber G, Mark EJ, Lander ES, Wong W, Johnson BE, Golub TR, Sugarbaker DJ, Meyerson M (2001) Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Nat Acad Sci United States of America 98(24):13790–13795. doi:10.1073/pnas.191502998

    Article  CAS  Google Scholar 

  34. Hoffman RM (1999) Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Investig New Drugs 17(4):343–359

    Article  CAS  Google Scholar 

  35. Rashidi B, Moossa AR, Hoffman RM (2013) Specific route mapping visualized with GFP of single-file streaming contralateral and systemic metastasis of Lewis lung carcinoma cells beginning within hours of orthotopic implantation [correction of implantion]. J Cell Biochem 114(8):1738–1743. doi:10.1002/jcb.24516

    Article  CAS  PubMed  Google Scholar 

  36. Rashidi B, Yang M, Jiang P, Baranov E, An Z, Wang X, Moossa AR, Hoffman RM (2000) A highly metastatic Lewis lung carcinoma orthotopic green fluorescent protein model. Clin Exp Metastasis 18(1):57–60

    Article  CAS  PubMed  Google Scholar 

  37. Bobek V, Kolostova K, Pinterova D, Kacprzak G, Adamiak J, Kolodziej J, Boubelik M, Kubecova M, Hoffman RM (2010) A clinically relevant, syngeneic model of spontaneous, highly metastatic B16 mouse melanoma. Anticancer Res 30(12):4799–4803

    PubMed  Google Scholar 

  38. Lelekakis M, Moseley JM, Martin TJ, Hards D, Williams E, Ho P, Lowen D, Javni J, Miller FR, Slavin J, Anderson RL (1999) A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis 17(2):163–170

    Article  CAS  PubMed  Google Scholar 

  39. Ishiwata I, Ishiwata C, Soma M, Ono I, Nakaguchi T, Kiguchi K, Furusato M, Tachibana T, Hashimoto H, Ishikawa H (1999) Establishment and characterization of human choriocarcinoma cell line derived from a metastatic focus of a testicular mixed germ cell tumor. Hum Cell 12(4):219–227

    CAS  PubMed  Google Scholar 

  40. Hwang TL, Changchien TT, Wang CC, Wu CM (2014) Claudin-4 expression in gastric cancer cells enhances the invasion and is associated with the increased level of matrix metalloproteinase-2 and -9 expression. Oncology letters 8(3):1367–1371. doi:10.3892/ol.2014.2295

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ikari A, Sato T, Takiguchi A, Atomi K, Yamazaki Y, Sugatani J (2011) Claudin-2 knockdown decreases matrix metalloproteinase-9 activity and cell migration via suppression of nuclear Sp1 in A549 cells. Life Sci 88(13–14):628–633. doi:10.1016/j.lfs.2011.02.002

    Article  CAS  PubMed  Google Scholar 

  42. Zavala-Zendejas VE, Torres-Martinez AC, Salas-Morales B, Fortoul TI, Montano LF, Rendon-Huerta EP (2011) Claudin-6, 7, or 9 overexpression in the human gastric adenocarcinoma cell line AGS increases its invasiveness, migration, and proliferation rate. Cancer Investig 29(1):1–11. doi:10.3109/07357907.2010.512594

    Article  Google Scholar 

  43. Jiang L, Yang YD, Fu L, Xu W, Liu D, Liang Q, Zhang X, Xu L, Guan XY, Wu B, Sung JJ, Yu J (2014) CLDN3 inhibits cancer aggressiveness via Wnt-EMT signaling and is a potential prognostic biomarker for hepatocellular carcinoma. Oncotarget 5(17):7663–7676

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang L, Jin X, Lin D, Liu Z, Zhang X, Lu Y, Liu Y, Wang M, Yang M, Li J, Quan C (2013) Clinicopathologic significance of claudin-6, occludin, and matrix metalloproteinases -2 expression in ovarian carcinoma. Diagn Pathol 8:190. doi:10.1186/1746-1596-8-190

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hong L, Wu Y, Feng J, Yu S, Li C, Wu Y, Li Z, Cao L, Wang F, Zhang Y (2014) Overexpression of the cell adhesion molecule claudin-9 is associated with invasion in pituitary oncocytomas. Hum Pathol 45(12):2423–2429. doi:10.1016/j.humpath.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  46. Rendon-Huerta E, Teresa F, Teresa GM, Xochitl GS, Georgina AF, Veronica ZZ, Montano LF (2010) Distribution and expression pattern of claudins 6, 7, and 9 in diffuse- and intestinal-type gastric adenocarcinomas. J Gastrointest Cancer 41(1):52–59. doi:10.1007/s12029-009-9110-y

    Article  CAS  PubMed  Google Scholar 

  47. Zhu J, Wang R, Cao H, Zhang H, Xu S, Wang A, Liu B, Wang Y, Wang R (2015) Expression of claudin-5, -7, -8 and -9 in cervical carcinoma tissues and adjacent non-neoplastic tissues. Int J Clin Exp Pathol 8(8):9479–9486

    PubMed  PubMed Central  Google Scholar 

  48. Ikari A, Watanabe R, Sato T, Taga S, Shimobaba S, Yamaguchi M, Yamazaki Y, Endo S, Matsunaga T (1843) Sugatani J (2014) Nuclear distribution of claudin-2 increases cell proliferation in human lung adenocarcinoma cells. Biochim Biophys Acta 9:2079–2088. doi:10.1016/j.bbamcr.2014.05.017

    Google Scholar 

  49. Dhawan P, Singh AB, Deane NG, No Y, Shiou SR, Schmidt C, Neff J, Washington MK, Beauchamp RD (2005) Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J Clin Investig 115(7):1765–1776. doi:10.1172/jci24543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jakab C, Rusvai M, Galfi P, Szabo Z, Szabara A, Kulka J (2010) Expression of claudin-1, -3, -4, -5 and -7 proteins in low grade colorectal carcinoma of canines. Histol Histopathol 25(1):55–62

    CAS  PubMed  Google Scholar 

  51. Gonzalez-Mariscal L, Tapia R, Chamorro D (2008) Crosstalk of tight junction components with signaling pathways. Biochim Biophys Acta 1778(3):729–756. doi:10.1016/j.bbamem.2007.08.018

    Article  CAS  PubMed  Google Scholar 

  52. Wu Q, Liu X, Liu YF, Lu Y, Wang LP, Zhang XW, Li YL, Quan CS (2013) Inhibition of p38 activity reverses claudin-6 induced cell apoptosis, invasion, and migration. Chin Med J 126(18):3539–3544

    CAS  PubMed  Google Scholar 

  53. Tabaries S, Dupuy F, Dong Z, Monast A, Annis MG, Spicer J, Ferri LE, Omeroglu A, Basik M, Amir E, Clemons M, Siegel PM (2012) Claudin-2 promotes breast cancer liver metastasis by facilitating tumor cell interactions with hepatocytes. Mol Cell Biol 32(15):2979–2991. doi:10.1128/mcb.00299-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Suh Y, Yoon CH, Kim RK, Lim EJ, Oh YS, Hwang SG, An S, Yoon G, Gye MC, Yi JM, Kim MJ, Lee SJ (2013) Claudin-1 induces epithelial-mesenchymal transition through activation of the c-Abl-ERK signaling pathway in human liver cells. Oncogene 32(41):4873–4882. doi:10.1038/onc.2012.505

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded in part from NIH R01 (CA138623), Kentucky Lung Cancer Research Program (RKS), The James Graham Brown Cancer Center and a grant from The University of Louisville School of Medicine (RKS). We thank John W. Eaton for critical reading of the manuscript. No writing assistance was utilized in the production of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajesh K. Sharma or Bodduluri Haribabu.

Ethics declarations

Conflict of interest

Authors disclose no potential conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R.K., Chheda, Z.S., Das Purkayastha, B.P. et al. A spontaneous metastasis model reveals the significance of claudin-9 overexpression in lung cancer metastasis. Clin Exp Metastasis 33, 263–275 (2016). https://doi.org/10.1007/s10585-015-9776-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-015-9776-4

Keywords

Navigation