Skip to main content

Introduction on Cancerous Cells and Metastasis

  • Living reference work entry
  • First Online:
Handbook of Cancer and Immunology

Abstract

The diffusion of cancer cells from the primary tumor site into a secondary organ of the body is called metastasis. Metastasis is a feature of malignant cancerous cells and is the cause of cancer treatment failure as well as most cancer-related deaths. Although many studies have been done on various aspects of the complex phenomenon of cancer metastasis, our knowledge is still very incomplete. Tumor biology research has revealed some of the molecular basis of this process, which can help find targets for molecular therapy to stop or potentially reverse the growth and metastasis of cancer. In order to overcome interstitial challenges and ensure a successful invasion, infiltrating tumor cells interact with the other neighboring cells as well as the various cells and molecular components present in the surrounding microenvironment. Identification of these interactions has improved some understanding of the biological principles of metastatic cells that control their flexible behavior. In fact, this is facilitated by the intrinsic genetic properties of cancer cells along with the many various epigenetic stimulants within their microenvironment. More research on the biological mechanisms beyond the metastatic process is thus important to find efficient treatment strategies for a successful intervention. In this chapter, recent advances and the latest findings on the characteristics of cancer metastasis will be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anderson M, Marayati R, Moffitt R, Yeh JJ (2017) Hexokinase 2 promotes tumor growth and metastasis by regulating lactate production in pancreatic cancer. Oncotarget 8:56081–56094. https://doi.org/10.18632/oncotarget.9760

  • Andrzejewski S, Klimcakova E, Johnson RM, Tabariès S, Annis MG, McGuirk S et al (2017) PGC-1α promotes breast cancer metastasis and confers bioenergetic flexibility against metabolic drugs. Cell Metab 26:778–787. https://doi.org/10.1016/j.cmet.2017.09.006

  • Araos J, Sleeman JP, Garvalov BK (2018) The role of hypoxic signalling in metastasis: towards translating knowledge of basic biology into novel anti-tumour strategies. Clin Exp Metastasis 35:563–599. https://doi.org/10.1007/s10585-018-9930-x

  • Asif PJ, Longobardi C, Hahne M, Medema JP (2021) The role of cancer-associated fibroblasts in cancer invasion and metastasis. Cancers (Basel) 13(18):4720. https://doi.org/10.3390/cancers13184720

  • Attieh Y, Clark AG, Grass C, Richon S, Pocard M, Mariani P et al (2017) Cancer-associated fibroblasts lead tumor invasion through integrin-β3-dependent fibronectin assembly. J Cell Biol 216(11):3509–3520. https://doi.org/10.1083/jcb.201702033

  • Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M (2019) Obesity and cancer risk: emerging biological mechanisms and perspectives. Metabolism 92:121–135. https://doi.org/10.1016/j.metabol.2018.11.001

  • Bakhoum SF, Ngo B, Laughney AM, Cavallo JA, Murphy CJ, Ly P et al (2018) Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553:467–472. https://doi.org/10.1038/nature25432

  • Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D (2016) Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 30:836–848. https://doi.org/10.1016/j.ccell.2016.10.009

  • Birsoy K, Possemato R, Lorbeer FK, Bayraktar EC, Thiru P, Yucel B et al (2014) Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature 508:108–112. https://doi.org/10.1038/nature13110

  • Bonuccelli G, Tsirigos A, Whitaker-Menezes D, Pavlides S, Pestell RG, Chiavarina B et al (2010) Ketones and lactate “fuel” tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 9:3506–3514. https://doi.org/10.4161/cc.9.17.12731

  • Bos PD, Zhang XHF, Nadal C, Shu W, Gomis RR, Nguyen DX et al (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459:1005–1009. https://doi.org/10.1038/nature08021

  • Bu L, Baba H, Yoshida N, Miyake K, Yasuda T, Uchihara T et al (2019) Biological heterogeneity and versatility of cancer-associated fibroblasts in the tumor microenvironment. Oncogene 38:4887–4901. https://doi.org/10.1038/s41388-019-0765-y

  • Chatterjee A, Stockwell PA, Ahn A, Rodger EJ, Leichter AL, Eccles MR (2017) Genome-wide methylation sequencing of paired primary and metastatic cell lines identifies common DNA methylation changes and a role for EBF3 as a candidate epigenetic driver of melanoma metastasis. Oncotarget 8:6085–6101. https://doi.org/10.18632/oncotarget.14042

  • Chen Y, Li S, Li W, Yang R, Zhang X, Ye Y et al (2019) Circulating tumor cells undergoing EMT are poorly correlated with clinical stages or predictive of recurrence in hepatocellular carcinoma. Sci Rep 9:7084. https://doi.org/10.1038/s41598-019-43572-1

  • Courtney KD, Bezwada D, Mashimo T, Pichumani K, Vemireddy V, Funk AM et al (2018) Isotope tracing of human clear cell renal cell carcinomas demonstrates suppressed glucose oxidation in vivo. Cell Metab 28:793–800. https://doi.org/10.1016/j.cmet.2018.07.020

  • Diepenbruck M, Christofori G (2016) Epithelial-mesenchymal transition (EMT) and metastasis: yes, no, maybe? Curr Opin Cell Biol 43:7–13. https://doi.org/10.1016/j.ceb.2016.06.002

  • Donato C, Kunz L, Castro-Giner F, Paasinen-Sohns A, Strittmatter K, Szczerba BM et al (2020) Hypoxia triggers the intravasation of clustered circulating tumor cells. Cell Rep 32:108105. https://doi.org/10.1016/j.celrep.2020.108105

  • Elia I, Schmieder R, Christen S, Fendt SM (2016) Organ-specific cancer metabolism and its potential for therapy. Handb Exp Pharmacol 233:321–353. https://doi.org/10.1007/164_2015_10

  • Elia I, Rossi M, Stegen S, Broekaert D, Doglioni G, van Gorsel M et al (2019) Breast cancer cells rely on environmental pyruvate to shape the metastatic niche. Nature 568:117–121. https://doi.org/10.1038/s41586-019-0977-x

  • Emon B, Bauer J, Jain Y, Jung B, Saif T (2018) Biophysics of tumor microenvironment and cancer metastasis – a mini review. Comput Struct Biotechnol J 16:279–287. https://doi.org/10.1016/j.csbj.2018.07.003

  • Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y (2020) Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther 5:28. https://doi.org/10.1038/s41392-020-0134-x

  • Faubert B, Solmonson A, DeBerardinis RJ (2020) Metabolic reprogramming and cancer progression. Science 368:eaaw5473. https://doi.org/10.1126/science.aaw5473

  • Faugeroux V, Lefebvre C, Pailler E, Pierron V, Marcaillou C, Tourlet S et al (2020) An accessible and unique insight into metastasis mutational content through whole-exome sequencing of circulating tumor cells in metastatic prostate cancer. Eur Urol Oncol 3:498–508. https://doi.org/10.1016/j.euo.2018.12.005

  • Fidler IJ (1970) Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 1251-S-lodo-2′-deoxyuridine. J Natl Cancer Inst 45:773–782. https://doi.org/10.1093/jnci/45.4.773

  • Fidler IJ (2003) The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nat Rev Cancer 3:453–458. https://doi.org/10.1038/nrc1098

  • Fluegen G, Avivar-Valderas A, Wang Y, Padgen MR, Williams JK, Nobre AR et al (2017) Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nat Cell Biol 19:120–132. https://doi.org/10.1038/ncb3465

  • Folkman J (2003) Fundamental concepts of the angiogenic process. Curr Mol Med 3:643–651. https://doi.org/10.2174/1566524033479465

  • Franses JW, Philipp J, Missios P, Bhan I, Liu A, Yashaswini C et al (2020) Pancreatic circulating tumor cell profiling identifies LIN28B as a metastasis driver and drug target. Nat Commun 11:3303. https://doi.org/10.1038/s41467-020-17150-3

  • Gkountela S, Castro-Giner F, Szczerba BM, Vetter M, Landin J, Scherrer R et al (2019) Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell 176:98–112. https://doi.org/10.1016/j.cell.2018.11.046

  • Granot Z (2019) Neutrophils as a therapeutic target in cancer. Front Immunol 10:1710. https://doi.org/10.3389/fimmu.2019.01710

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

  • Heidenreich R, Rӧcken M, Ghoreschi K (2008) Angiogenesis: the new potential target for the therapy of psoriasis? Drug News Perspect 21:97–105. https://doi.org/10.1358/dnp.2008.21.2.1188196

  • Hensley CT, Faubert B, Yuan Q, Lev-Cohain N, Jin E, Kim J et al (2016) Metabolic heterogeneity in human lung tumors. Cell 164:681–694. https://doi.org/10.1016/j.cell.2015.12.034

  • Hosaka K, Yang Y, Seki T, Fischer C, Dubey O, Fredlund E et al (2016) Pericyte-fibroblast transition promotes tumor growth and metastasis. Proc Natl Acad Sci U S A 113:5618–5627. https://doi.org/10.1073/pnas.1608384113

  • Hu J, Locasale JW, Bielas JH, O’Sullivan J, Sheahan K, Cantley LC et al (2013) Heterogeneity of tumor-induced gene expression changes in the human metabolic network. Nat Biotechnol 31:522–529. https://doi.org/10.1038/nbt.2530

  • Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H et al (2008) ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320:661–664. https://doi.org/10.1126/science.1156906

  • Jin F, Brockmeier U, Otterbach F, Metzen E (2012) New insight into the SDF-1/CXCR4 axis in a breast carcinoma model: hypoxia-induced endothelial SDF-1 and tumor cell CXCR4 are required for tumor cell intravasation. Mol Cancer Res 10:1021–1031. https://doi.org/10.1158/1541-7786.MCR-11-0498

  • Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358(19):2039–2049. https://doi.org/10.1056/NEJMra0706596

  • Lambert AW, Pattabiraman DR, Weinberg RA (2017) Emerging biological principles of metastasis. Cell 168:670–691. https://doi.org/10.1016/j.cell.2016.11.037

  • Lohr JG, Adalsteinsson VA, Cibulskis K, Choudhury AD, Rosenberg M, Cruz-Gordillo P et al (2014) Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat Biotechnol 32:479–484. https://doi.org/10.1038/nbt.2892

  • Lu J (2019) The Warburg metabolism fuels tumor metastasis. Cancer Metastasis Rev 38:157–164. https://doi.org/10.1007/s10555-019-09794-5

  • Luo C, Lim JH, Lee Y, Granter SR, Thomas A, Vazquez F et al (2016) A PGC1α-mediated transcriptional axis suppresses melanoma metastasis. Nature 537:422–426. https://doi.org/10.1038/nature19347

  • Massagué J, Obenauf AC (2016) Metastatic colonization by circulating tumour cells. Nature 529:298–306. https://doi.org/10.1038/nature17038

  • Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF et al (2004) Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res 10:8152–8162. https://doi.org/10.1158/1078-0432.CCR-04-1110

  • Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri D et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524. https://doi.org/10.1038/nature03799

  • Mohammadi-Motlagh HR, Mansouri K, Mostafaie A (2010) Plants as useful agents for angiogenesis and tumor growth prevention. Physiol Pharmacol 14:302–317. http://ppj.phypha.ir/article-1-592-en.html

  • Mowers EE, Sharifi MN, Macleod KF (2017) Autophagy in cancer metastasis. Oncogene 36:1619–1630. https://doi.org/10.1038/onc.2016.333

  • Nia HT, Munn LL, Jain RK (2020) Physical traits of cancer. Science 370:eaaz0868. https://doi.org/10.1126/science.aaz0868

  • Noonan DM, Benelli R, Albini A (2007) Angiogenesis and cancer prevention: a vision. Recent Results Cancer Res 174:219–224. https://doi.org/10.1007/978-3-540-37696-5_19

  • Okugawa Y, Grady WM, Goel A (2015) Epigenetic alterations in colorectal cancer: emerging biomarkers. Gastroenterology 149:1204–1225. https://doi.org/10.1053/j.gastro.2015.07.011

  • Ortiz-Otero N, Marshall JR, Lash B, King MR (2020) Chemotherapy-induced release of circulating-tumor cells into the bloodstream in collective migration units with cancer-associated fibroblasts in metastatic cancer patients. BMC Cancer 20:873. https://doi.org/10.1186/s12885-020-07376-1

  • Pascual G, Avgustinova A, Mejetta S, Martín M, Castellanos A, Attolini CSO et al (2017) Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541:41–45. https://doi.org/10.1038/nature20791

  • Payen VL, Porporato PE, Baselet B, Sonveaux P (2016) Metabolic changes associated with tumor metastasis, part 1: tumor pH, glycolysis and the pentose phosphate pathway. Cell Mol Life Sci 73:1333–1348. https://doi.org/10.1007/s00018-015-2098-5

  • Porporato PE, Payen VL, Pérez-Escuredo J, De Saedeleer CJ, Danhier P, Copetti T et al (2014) A mitochondrial switch promotes tumor metastasis. Cell Rep 8:754–766. https://doi.org/10.1016/j.celrep.2014.06.043

  • Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51. https://doi.org/10.1016/j.cell.2010.03.014

  • Rankin EB, Nam JM, Giaccia AJ (2016) Hypoxia: signaling the metastatic cascade. Trends Cancer 2:295–304. https://doi.org/10.1016/j.trecan.2016.05.006

  • Schlesinger M (2018) Role of platelets and platelet receptors in cancer metastasis. J Hematol Oncol 11:125. https://doi.org/10.1186/s13045-018-0669-2

  • Spill F, Reynolds DS, Kamm RD, Zaman MH (2016) Impact of the physical microenvironment on tumor progression and metastasis. Curr Opin Biotechnol 40:41–48. https://doi.org/10.1016/j.copbio.2016.02.007

  • Suhail Y, Cain MP, Vanaja Gireesan K, Kurywchak PA, Levchenko A, Kalluri R et al (2019) Systems biology of cancer metastasis. Cell Syst 9:109–127. https://doi.org/10.1016/j.cels.2019.07.003

  • Szczerba BM, Castro-Giner F, Vetter M, Krol I, Gkountela S, Landin J et al (2019) Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 566:553–557. https://doi.org/10.1038/s41586-019-0915-y

  • Sznurkowska MK, Aceto N (2021) The gate to metastasis: key players in cancer cell intravasation. FEBS J 289:4336. https://doi.org/10.1111/febs.16046

  • Tian L, Goldstein A, Wang H, Lo HC, Kim IS, Welte T et al (2017) Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature 544:250–254. https://doi.org/10.1038/nature21724

  • Torrano V, Valcarcel-Jimenez L, Cortazar AR, Liu X, Castillo-Martin M, Fernández-Ruiz S et al (2016) The metabolic co-regulator PGC1α suppresses prostate cancer metastasis. Nat Cell Biol 18:645–656. https://doi.org/10.1038/ncb3357

  • Tortora G, Melisi D, Ciardiello F (2004) Angiogenesis: a target for cancer therapy. Curr Pharm Des 10:11–26. https://doi.org/10.2174/1381612043453595

  • Wang Y, Liping GUO, Feng L, Zhang W, Xiao T, Xuebing DI et al (2018) Single nucleotide variant profiles of viable single circulating tumour cells reveal CTC behaviours in breast cancer. Oncol Rep 39:2147–2159. https://doi.org/10.3892/or.2018.6325

  • Weidle UH, Birzele F, Kollmorgen G, Ruger R (2017) The multiple roles of exosomes in metastasis. Cancer Genomics Proteomics 14:1–15. https://doi.org/10.21873/cgp.20015

  • Wells A, Griffith L, Wells JZ, Taylor DP (2013) The dormancy dilemma: quiescence versus balanced proliferation. Cancer Res 73:3811–3816. https://doi.org/10.1158/0008-5472.CAN-13-0356

  • Wiel C, Le Gal K, Ibrahim MX, Jahangir CA, Kashif M, Yao H et al (2019) BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell 178:330–345. https://doi.org/10.1016/j.cell.2019.06.005

  • Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z (2020) Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun 11(1):5120. https://doi.org/10.1038/s41467-020-18794-x

  • Wu Y, Sarkissyan M, Vadgama JV (2015) Epigenetics in breast and prostate cancer. Methods Mol Biol 1238:425–466. https://doi.org/10.1007/978-1-4939-1804-1_23

  • Wu M, Ma M, Tan Z, Zheng H, Liu X (2020) Neutrophil: a new player in metastatic cancers. Front Immunol 11:565165. https://doi.org/10.3389/fimmu.2020.565165

  • Wyckoff JB, Jones JG, Condeelis JS, Segall JE (2000) A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res 60:2504–2511. PMID: 10811132

    Google Scholar 

  • Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F et al (2004) A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 64(19):7022–7029. https://doi.org/10.1158/0008-5472.CAN-04-1449

  • Yan MJ, Jurasz P (2016) The role of platelets in the tumor microenvironment: from solid tumors to leukemia. Biochim Biophys Acta 1863:392–400. https://doi.org/10.1016/j.bbamcr.2015.07.008

  • Yang E, Liu L, Zhang Q et al (2020) DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. Nature 583:133–138. https://doi.org/10.1038/s41586-020-2394-6

  • Yu M, Ting DT, Stott SL, Wittner BS, Ozsolak F, Paul S et al (2012) RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis. Nature 487:510–513. https://doi.org/10.1038/nature11217

  • Zhang H, Wong CCL, Wei H, Gilkes DM, Korangath P, Chaturvedi P et al (2012) HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene 31:1757–1770. https://doi.org/10.1038/onc.2011.365

  • Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC et al (2015) Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527(7576):100–104. https://doi.org/10.1038/nature15376

  • Zhao L, Wu X, Li T, Luo J, Dong D (2020) ctcRbase: the gene expression database of circulating tumor cells and microemboli. Database (Oxford) 2020:1–6. https://doi.org/10.1093/database/baaa020

  • Zhou J, Tang Z, Gao S, Li C, Feng Y, Zhou X (2020) Tumor-associated macrophages: recent insights and therapies. Front Oncol 10:188. https://doi.org/10.3389/fonc.2020.00188

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Rezaei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mohammadi-Motlagh, HR., Sadeghalvad, M., Rezaei, N. (2023). Introduction on Cancerous Cells and Metastasis. In: Rezaei, N. (eds) Handbook of Cancer and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-80962-1_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80962-1_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80962-1

  • Online ISBN: 978-3-030-80962-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics