Skip to main content
Log in

Interpenetrated polymer networks in composites with poly(vinyl alcohol), micro- and nano-fibrillated cellulose (M/NFC) and polyHEMA to develop packaging materials

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A novel method for the preparation of composites based on poly(vinyl alcohol) (PVA) and micro- and nano-fibrillated cellulose (M/NFC) is reported. The addition of crosslinking HEMA monomers and a photo-initiator enabled the formation of an interpenetrated polymer network that displayed enhanced interfacial adhesion and dispersion of (M/NFC) in the matrix. Photo-crosslinked PVA/(M/NFC)/polyHEMA composite films produced by casting followed by UV polymerization of HEMA were characterized by using several approaches. These included Fourier transform infrared and UV–Vis spectroscopies, differential scanning calorimetry, X-ray diffractometry, thermogravimetric analysis and dynamic mechanical analysis. The thermo-mechanical and optical properties as well as water absorption and vapor barrier abilities of the developed photo-crosslinked PVA/(M/NFC)/polyHEMA films were measured and the benefit of photo-crosslinking determined. The major degradation peak of photo-crosslinked PVA/(M/NFC)/polyHEMA composites increased substantially compared to that of the PVA/(M/NFC) system (from ~300 to ~350 °C). The water vapor permeability of PVA/(M/NFC)/polyHEMA composite films was reduced with HEMA loading (5.44 × 10−11, 5.10 × 10−11, 4.12 × 10−11, 4.31 × 10−11 g/m h Pa for 0, 5, 10 and 15 % HEMA, respectively). Overall, a new and facile method for the synthesis of PVA/(M/NFC)-based composite networks interpenetrated with cross-linked poly(HEMA) is demonstrated, offering excellent prospects for packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abd El-Kader KAM, Abdel Hamied SF, Mansour AB, El-Lawindy AM, El-Tantaway F (2002) Effect of the molecular weights on the optical and mechanical properties of poly(vinyl alcohol) films. Polym Test 21:847–850

    Article  CAS  Google Scholar 

  • Ali SS, Tang X, Alavi S, Faubion J (2011) Structure and physical properties of starch/polyvinyl alcohol/sodium montmorillonite nanocomposite films. J Agric Food Chem 59:12384–12395

    Article  CAS  Google Scholar 

  • Andresen M, Johansson LS, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–667

    Article  CAS  Google Scholar 

  • Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Öterberg M, Wäberg L (2009) Nanoscale cellulose films with different crystallinities and mesostructures-their surface properties and interaction with water. Langmuir 25:7675–7685

    Article  CAS  Google Scholar 

  • Bader RA, Rochefort WE (2008) Rheological characterization of photopolymerized poly(vinyl alcohol) hydrogels for potential use in nucleus pulposus replacement. J Biomed Mater Res A 86A:494–501

    Article  CAS  Google Scholar 

  • Boudenne A, Ibos L, Candau Y, Thomas S (2011) Handbook of multiphase polymer systems. Wiley, Chichester, pp 455–457

    Book  Google Scholar 

  • Burczak K, Fujisato T, Hatada M, Ikada Y (1994) Protein permeation through poly(vinyl alcohol) hydrogel membranes. Biomaterials 15:231–238

    Article  CAS  Google Scholar 

  • Castro C, Vesterinen A, Zuluaga R, Caro G, Filpponen I, Rojas OJ, Kortaberria G, Gañán P (2014) In situ production of nanocomposites of poly(vinyl alcohol) and cellulose nanofibrils from Gluconacetobacter bacteria: effect of chemical crosslinking. Cellulose. doi:10.1007/s10570-014-0170-1

    Google Scholar 

  • Chakraborty A, Sain M, Kortschot M (2006) Reinforcing potential of wood pulp-derived microfibres in a PVA matrix. Holzforschung 60:53–58

    Article  CAS  Google Scholar 

  • Chatterjee PK (2002) Absorbent technology. In: Gupta BS (ed) Textile science and technology, vol 13. Elsevier, Amsterdam

    Google Scholar 

  • Chen Y, Cao X, Chang PR, Huneault MA (2008) Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohydr Polym 73:8–17

    Article  CAS  Google Scholar 

  • Chen HB, Hollinger E, Wang YZ, Schirald DA (2014) Facile fabrication of poly(vinyl alcohol) gels and derivative aerogels. Polymer 55:380–384

    Article  CAS  Google Scholar 

  • Cheng QZ, Wang SQ, Rials TG, Lee S-H (2007) Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14:593–602

    Article  CAS  Google Scholar 

  • Cherian BM, Pothan LA, Nguyen-Chung T, Mennig G, Kottaisamy M, Thomas SA (2008) Novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. J Agric Food Chem 56:5617–5627

    Article  CAS  Google Scholar 

  • Coleman JN, Cadek M, Blake R, Nicolosi V, Ryan KP, Belton C, Fonseca A, Nagy JB, Gun’ko YK (2004) High performance nanotube-reinforced plastics: understanding the mechanism of strength increase. Adv Funct Mater 14:791–798

    Article  CAS  Google Scholar 

  • Cowie JMG, Arrighi V, Cameron J, McEwan I, McEwen IJ (2001) Lyotropic liquid crystalline cellulose derivatives in blends and molecular composites. Polymer 42:9657–9663

    Article  CAS  Google Scholar 

  • Devia N, Manson JA, Sperling LH, Conde A (1979a) Simultaneous interpenetrating networks based on castor oil elastomers and polystyrene. 2. Synthesis and systems characteristics. Macromolecules 12:360–369

    Article  CAS  Google Scholar 

  • Devia N, Manson JA, Sperling LH, Conde A (1979b) Simultaneous interpenetrating networks based on castor oil elastorners and polystyrene. IV. Stress-strain and impact loading behavior. Polym Eng Sci 19:878–882

    Article  CAS  Google Scholar 

  • Di Pierro P, Mariniello L, Giosafatto CVL, Masi P, Porta R (2005) Solubility and permeability properties of edible pectin-soy flour films obtained in the absence or presence of transglutaminas. Food Biotechnol 19:37–49

    Article  Google Scholar 

  • Ding B, Kimura E, Sato T, Fujita S, Shiratori S (2004) Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning. Polymer 45:1895–1902

    Article  CAS  Google Scholar 

  • Dufresne A, Vignon MR (1998) Improvement of starch film performances using cellulose microfibrils. Macromolecules 31:2693–2696

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Young RJ (2001) The Young’s modulus of a microcrystalline cellulose. Cellulose 8:197–207

    Article  CAS  Google Scholar 

  • Fakirov S, Bhattacharyya D, Shields RJ (2008) Nanofibril reinforced composites from polymer blends. Colloids Surf A Physicochem Eng Asp 313–314:2–8

    Article  Google Scholar 

  • Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367

    Article  CAS  Google Scholar 

  • Favier V, Cavaille JY, Canova GR, Shrivastava SC (1997) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37:1732–1739

    Article  CAS  Google Scholar 

  • Finch C (1973) Polyvinyl alcohol properties and application. Wiley, New York

    Google Scholar 

  • Fortunati E, Armentano I, Zhou Q, Iannoni A, Saino E, Visai L, Berglund LA, Kenny JM (2012) Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 87:1596–1605

    Article  CAS  Google Scholar 

  • Fortunati E, Puglia D, Monti M, Santulli C, Maniruzzaman M, Kenny JM (2013) Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. J Appl Polym Sci 128:3220–3230

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165

    Article  CAS  Google Scholar 

  • Garcia DR, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270

    Article  Google Scholar 

  • Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567

    Article  CAS  Google Scholar 

  • Gwon JG, Lee SY, Doh GH, Kim JH (2010) Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites. J Appl Polym Sci 116:3212–3219

    CAS  Google Scholar 

  • Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv Polym Sci 153:37–65

    Article  CAS  Google Scholar 

  • Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585

    Article  CAS  Google Scholar 

  • Huang X, Netravali AN (2009) Biodegradable green composites made using bamboo micro/nano-fibrils and chemically modified soy protein resin. Compos Sci Technol 69:1009–1015

    Article  CAS  Google Scholar 

  • Immelman E, Sanderson R, Jacobs E, Van Reenen A (1993) Poly(vinyl alcohol) gel sublayers for reverse osmosis membranes. I. Insolubilization by acid-catalyzed dehydration. J Appl Polym Sci 50:1013–1034

    Article  CAS  Google Scholar 

  • Jia X, Li Y, Zhang B, Cheng Q, Zhang S (2008) Preparation of poly(vinyl alcohol)/kaolinite nanocomposites via in situ polymerization. Mater Res Bull 43:611–617

    Article  CAS  Google Scholar 

  • Katz MG, Wydeven T Jr (1981) Selective permeability of PVA membranes. I. Radiation-crosslinked membranes. J Appl Polym Sci 26:2935–2946

    Article  CAS  Google Scholar 

  • Kim JH, Kim JY, Lee YM, Kim KY (1992) Properties and swelling characteristics of cross-linked poly(vinyl alcohol)/chitosan blend membrane. J Appl Polym Sci 45:1711–1717

    Article  CAS  Google Scholar 

  • Laborie M-P (2009) Bacterial cellulose and its polymeric nanocomposites. In: Lucia L, Rojas OR (eds) The nanoscience and technology of renewable biomaterials. Wiley, Chichester, pp 231–271

    Chapter  Google Scholar 

  • Lange J, Wyser Y (2003) Recent innovations in barrier technologies for plastic packaging—a review. Packag Technol Sci 16:149–158

    Article  CAS  Google Scholar 

  • Lee TY, Roper TM, Jonsson ES, Kudyakov I, Viswanathan K, Nason C, Guymon CA, Hoyle CE (2003) The kinetics of vinyl acrylate photopolymerization. Polymer 44:2859–2865

    Article  CAS  Google Scholar 

  • Littunen K, Hippi U, Saarinen T, Seppälä J (2013) Network formation of nanofibrillated cellulose in solution blended poly(methyl methacrylate) composites. Carbohydr Polym 91:183–190

    Article  CAS  Google Scholar 

  • Liu M, Guo B, Du M, Jia D (2007) Drying induced aggregation of halloysite nanotubes in polyvinyl alcohol/halloysite nanotubes solution and its effect on properties of composite film. Appl Phys A Mater Sci Process 88:391–395

    Article  CAS  Google Scholar 

  • Liu D, Sun X, Tian H, Maiti S, Ma Z (2013) Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites. Cellulose 20:2981–2989

    Article  CAS  Google Scholar 

  • Lu J, Askeland P, Drzal LT (2008a) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1298

    Article  CAS  Google Scholar 

  • Lu J, Wang T, Drzal LT (2008b) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos A Appl Sci 39:738–746

    Article  Google Scholar 

  • Mathew AP, Thielemans W, Dufresne A (2008) Mechanical properties of nanocomposites from sorbitol plasticized starch and tunicin whiskers. J Appl Polym Sci 109:4065–4074

    Article  CAS  Google Scholar 

  • Miller KS, Krochta JM (1997) Oxygen and aroma barrier properties of edible films: a review. Trends Food Sci Technol 8:228–237

    Article  CAS  Google Scholar 

  • Millon LE, Oates CJ, Wan WK (2009) Compression properties of polyvinyl alcoholbacterial cellulose nanocomposite. J Biomed Mater Res B Appl Biomater 90B:922–929

    Article  CAS  Google Scholar 

  • Minelli M, Baschetti MG, Doghieri F, Ankerfors M, Lindströb T, SiróI Plackett D (2010) Investigation of mass transport properties of microfibrillated cellulose ((M/NFC)) films. J Membr Sci 358:67–75

    Article  CAS  Google Scholar 

  • Mtshali TN, Krupa I, Luyt AS (2001) The effect of cross-linking on the thermal properties of LDPE/wax blends. Thermalchim Acta 380:47–54

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of highstrength plant fiber based composites. Appl Phys A 78:547–552

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A 80:155–159

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2008) The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose 15:555–559

    Article  CAS  Google Scholar 

  • Nakagaito AN, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A 80:93–97

    Article  CAS  Google Scholar 

  • Nakagaito AN, Fujimura A, Sakai T, Hama Y, Yano H (2009) Production of microfibrillated cellulose ((M/NFC))-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Compos Sci Technol 69:1293–1297

    Article  CAS  Google Scholar 

  • Nuttelman CR, Henry SM, Anseth KS (2002) Synthesis and characterization of photocrosslinkable, degradable poly(vinyl alcohol)-based tissue engineering scaffolds. Biomaterials 23:3617–3626

    Article  CAS  Google Scholar 

  • Ollier RP, Perez CJ, Alvarez VA (2013) Preparation and characterization of micro and nanocomposites based on poly(vinyl alcohol) for packaging applications. J Mater Sci 48:7088–7096

    Article  CAS  Google Scholar 

  • Paradossi G, Cavalieri F, Chiessi E, Spagnoli C, Cowman MK (2003) Poly(vinyl alcohol) as versitile biomaterial for potential biomedical applications. J Mater Sci Mater Med 14:687–691

    Article  CAS  Google Scholar 

  • Paralikar SA, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystals barrier membranes. J Membr Sci 320:248–258

    Article  CAS  Google Scholar 

  • Park S, Hettiarachchy N, Were L (2000) Degradation behavior of soy protein-wheat gluten films in simulated soil conditions. J Agric Food Chem 48:3027–3031

    Article  CAS  Google Scholar 

  • Pereda M, Amica G, Rácz I, Marcovich NE (2011) Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. J Food Eng 103:76–83

    Article  CAS  Google Scholar 

  • Peresin MS, Habibi Y, Vesterinen A-H, Rojas OJ, Pawlak JJ, Seppälä JV (2010) Effect of moisture on electrospun nanofiber composites of poly(vinyl alcohol) and cellulose nanocrystals. Biomacromolecules 11:2471–2477

    Article  CAS  Google Scholar 

  • Peresin MS, Vesterinen A-H, Habibi Y, Johansson L-S, Pawlak JJ, Nevzorov AA, Rojas OJ (2014) Crosslinked PVA nanofibers reinforced with cellulose nanocrystals: water interactions and thermomechanical properties. J Appl Polym Sci. doi:10.1002/APP.40334

    Google Scholar 

  • Piggott MR (1987) Load bearing fiber composites, 2nd edn. Pergamon Press, Toronto

    Google Scholar 

  • Pradhan NR, Iannacchione GS (2010) Thermal properties and glass transition in PMMA + SWCNT composites. J Phys D Appl Phys. doi:10.1088/0022-3727/43/30/305403

    Google Scholar 

  • Probst O, Moore EM, Resasco DE, Grady BP (2004) Nucleation of polyvinyl alcohol crystallization by single-walled carbon nanotubes. Polymer 45:4437–4443

    Article  CAS  Google Scholar 

  • Qiu KY, Netravali AN (2012) Fabrication and characterization of biodegradable composites based on microfibrillated cellulose and polyvinyl alcohol. Compos Sci Technol 72:1588–1594

    Article  CAS  Google Scholar 

  • Rhim JW (2007) Mechanical and water barrier properties of biopolyester films prepared by thermo-compression. Food Sci Biotechnol 16:62–66

    Google Scholar 

  • Roohani M, Habibi Y, Belgacem N, Ebrahim G, Karimi A, Dufresne A (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44:2489–2498

    Article  CAS  Google Scholar 

  • Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydr Polym 71:235–244

    Article  CAS  Google Scholar 

  • Sanderson R, Immelman E, Bezuidenhout D, Jacobs E, van Reenen A (1993) A polyvinyl alcohol and modified polyvinyl alcohol reverse osmosis membranes. Desalination 90:15–29

    Article  CAS  Google Scholar 

  • Santos C, Seabra P, Veleirinho B, Delgadillo I, Lopes da Silva JA (2006) Acetylation and molecular mass effects on barrier and mechanical properties of shortfin squid chitosan membranes. Eur Polym J 42:3277–3285

    Article  CAS  Google Scholar 

  • Saxena A, Ragauskas AJ (2009) Water transmission barrier properties of biodegradable films based on cellulosic whiskers and xylan. Carbohydr Polym 78:357–360

    Article  CAS  Google Scholar 

  • Shields RJ, Bhattacharyya D, Fakirov S (2008) Oxygen permeability analysis of microfibril reinforced composites from PE/PET blends. Compos A Appl Sci 39:940–949

    Article  Google Scholar 

  • Singha N, Parya T, Ray S (2009) Dehydration of 1, 4-dioxane by pervaporation using filled and crosslinked polyvinyl alcohol membrane. J Membr Sci 340:35–44

    Article  CAS  Google Scholar 

  • Siracusa V, Rocculi P, Romani S, Dalla Rosa M (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643

    Article  CAS  Google Scholar 

  • Song P, Xu ZG, Guo QP (2013) Bioinspired strategy to reinforce PVA with improved toughness and thermal properties via hydrogen-bond self-assembly. ACS Macro Lett 2:1100–1104

    Article  CAS  Google Scholar 

  • Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010a) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101:5961–5968

    Article  CAS  Google Scholar 

  • Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2010b) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17:835–848

    Article  CAS  Google Scholar 

  • Spoljaric S, Salminen A, Luong ND, Seppälä J (2014) Stable, self-healing hydrogels from nanofibrillated cellulose, poly(vinyl alcohol) and borax via reversible crosslinking. Eur Polym J 56:105–117

    Article  CAS  Google Scholar 

  • Srithep Y, Turng L-S, Sabo R, Clemons C (2012) Nanofibrillated cellulose (NFC) reinforced polyvinyl alcohol (PVOH) nanocomposites: properties, solubility of carbon dioxide, and foaming. Cellulose 19:1209–1223

    Article  CAS  Google Scholar 

  • Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45

    Article  CAS  Google Scholar 

  • Stevens ES (2002) Green plastics: an introduction to the new science of biodegradable plastics. Princeton University Press, Princeton, New Jersey, pp 10–30

    Google Scholar 

  • Svagan AJ, Azizi Samir MAS, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8:2556–2563

    Article  CAS  Google Scholar 

  • Svagan AJ, Hedenqvist MS, Berglund L (2009) Reduced water vapor sorption in cellulose nanocomposites with starch matrix. Compos Sci Technol 69:500–506

    Article  CAS  Google Scholar 

  • Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85

    Article  CAS  Google Scholar 

  • Tanpichai S, Sampson WW, Eichhorn SJ (2014) Stress transfer in microfibrillated cellulose reinforced poly(vinyl alcohol) composites. Compos A 65:186–191

    Article  CAS  Google Scholar 

  • Trovatti E, Oliveira L, Freire CSR, Silvestre AJD, Neto CP, Cruz Pinto JJC, Gandini A (2010) Novel bacterial cellulose-acrylic resin nanocomposites. Compos Sci Technol 70:1148–1153

    Article  CAS  Google Scholar 

  • Wäberg L, Decher G, Norgren M, Lindströ T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795

    Article  Google Scholar 

  • Wang J, Gao C, Zhang Y, Wan Y (2010) Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial corena biomaterial. Mater Sci Eng, C 30:214–218

    Article  Google Scholar 

  • Warner SB (1995) Fiber science. Prentice Hall, Upper Saddle River, pp 205–206

    Google Scholar 

  • Yan CH, Zhang JM, Lv YX, Yu J, Wu J, Zhang J, Zhang J, He J (2009) Thermoplastic cellulose-graftpoly (l-lactide) copolymers homogeneously synthesized in an lonic liquid with 4-deimethylaminopyridine catalyst. Biomacromolecules 10:2013–2018

    Article  CAS  Google Scholar 

  • Yang E, Qin X, Wang S (2008) Electrospun crosslinked polyvinyl alcohol membrane. Mater Lett 62:3555–3557

    Article  CAS  Google Scholar 

  • Young RJ, Lovell PA (2011) Introduction to polymers, 3rd edn. CRC Press, Boca Raton, pp 591–622

    Google Scholar 

  • Zhang L, Zhao J, Zhu JT, He CC, Wang HL (2012) Anisotropic tough poly(vinyl alcohol) hydrogels. Soft Matter 8:10439–10447

    Article  CAS  Google Scholar 

  • Zimmermann T, Pohler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (51373070) and State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University (LK 1426) and Key Laboratory of Advanced Textile Materials and Manufacturing Technology (Zhejiang Sci-Tech University), Ministry of Education (2014003) and Cooperative Innovation Fund (BY2014023-07) and the Fundamental Research Funds for the Central Universities (JUSRP 51305A) as well as the MOE & SAFEA for the 111 Project (B13025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiyu Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, H., Li, Y., Wang, W. et al. Interpenetrated polymer networks in composites with poly(vinyl alcohol), micro- and nano-fibrillated cellulose (M/NFC) and polyHEMA to develop packaging materials. Cellulose 22, 3877–3894 (2015). https://doi.org/10.1007/s10570-015-0748-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0748-2

Keywords

Navigation