, Volume 14, Issue 1, pp 49–64 | Cite as

Cellulose esters in drug delivery

  • Kevin J. Edgar


Cellulose esters have played a vital role in the development of modern drug delivery technology. They possess properties that are not only well-suited to the needs of pharmaceutical applications, but that enable construction of drug delivery systems that address critical patient needs. These properties include very low toxicity, endogenous and/or dietary decomposition products, stability, high water permeability, high T g, film strength, compatibility with a wide range of actives, and ability to form micro- and nanoparticles. This suite of properties has enabled the creation of a wide range of drug delivery systems employing cellulose esters as key ingredients. The following is a review of the most important types of these systems, and of the critical roles played by cellulose esters in making them work, focusing on more recent developments.


Amorphous matrix Cellulose acetate Cellulose acetate butyrate Cellulose acetate phthalate Cellulose acetate propionate Cellulose ester Controlled release Drug delivery Enteric coating Matrix release Osmotic pump Zero-order release 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



My personal thanks go to Andy Singleton and Jinghua Yuan of Eastman for their help with the table of properties of cellulose esters used in current drug delivery applications.


  1. Appel L.E., Curatolo W.J., Herbig S.M., Nightingale J.A.S., Thombre A.G. (2004). Controlled release by extrusion of solid amorphous dispersions of drugs. US Patent 6:706, 283Google Scholar
  2. Bauer C.W., Masucci P.E. (1948). The action of intestinal enzymes upon cellulose acetate phthalate and butyl stearate enteric-coated tablets. J. Am. Pharm. Assoc. 37:124–128Google Scholar
  3. Beyger J.W., Nairn J.G. (1986). Some factors affecting the microencapsulation of pharmaceuticals with cellulose acetate phthalate. J. Pharm. Sci. 75:573–578CrossRefGoogle Scholar
  4. Bhardwaj S.B., Shukla A.J., Collins C.C. (1995). Effect of varying drug loading on particle size distribution and drug release kinetics of verapamil hydrochloride microspheres prepared with cellulose esters. J. Microencapsul. 12:71–81Google Scholar
  5. Carino G.P., Jacob J.S., Mathiowitz E. (2000). Nanosphere based oral insulin delivery. J. Contr. Rel. 65:261–269CrossRefGoogle Scholar
  6. Catellani P.L., Colombo P., Peppas N.A., Santi P., Bettini R. (1998). Partial permselective coating adds an osmotic contribution to drug release from swellable matrixes. J. Pharm. Sci. 87:726–731CrossRefGoogle Scholar
  7. Chang R.-K., Price J. and Whitworth C.W. 1986. Control of drug release rates through the use of mixtures of polycaprolactone and cellulose propionate polymers. Pharm. Tech. October: 24–33Google Scholar
  8. Chang R.-K., Price J., Whitworth C.W. (1987). Control of drug release rate by use of mixtures of polycaprolactone and cellulose acetate butyrate polymers. Drug Dev. Ind. Pharm. 13:1119–1135Google Scholar
  9. Cohen J. (2005). Gut assumes sinister new role in HIV pathogenesis. Science 307:1395CrossRefGoogle Scholar
  10. Curatolo W.J., Nightingale J.A.S., Shanker R.M. and Sutton S.C. 2003. Basic drug compositions with enhanced bioavailability. US Patent 6,548,555Google Scholar
  11. Davis S.S. (2005). Formulation strategies for absorption windows. Drug Del. Tech. 10:249–257Google Scholar
  12. Efentakis M., Koutlis A. and Vlachou M. 2000. Development and evaluation of oral multiple unit and single-unit hydrophilic controlled release systems. AAPS PharmSciTech 1:␣Article 34Google Scholar
  13. El-Gibaly I., Safwat S.M., Ahmed M.O. (1996). Microencapsulation of ketoprofen using w/o/w complex emulsion technique. J. Microencapsul. 13:67–97Google Scholar
  14. El-Said Y., Hashem F. (1991). In-vitro evaluation of sustained-release dyphylline tablets. Drug Dev. Ind. Pharm. 17:281–293Google Scholar
  15. Evans D.F., Pye G., Bramley R., Clark A.G., Tyson T.J., Hardcastle J.D. (1988). Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 29:1035–1041Google Scholar
  16. Follonier N., Doelker E. (1992). Biopharmaceutical comparison of oral multiple-unit and single-unit sustained-release dosage forms. S.T.P. Pharm. Sci. 2:141–158Google Scholar
  17. Giunchedi P., Conti B., Maggi L., Conte U. (1994). Cellulose acetate butyrate and polycaprolactone for ketoprofen spray-dried microsphere preparation. J. Microencapsul. 11:381–393Google Scholar
  18. Jacobsen O., Højgaard L., Møller E.H., Wielandt T.O., Thale M., Jarnum S., Krag E. (1985). Effect of enterocoated cholestyramine on bowel habit after ileal resection: a double blind crossover study. Brit. Med. J. 290:1315–1318CrossRefGoogle Scholar
  19. Kashdan D.S. 1989. Polymer blends having reverse phase morphology for controlled delivery of bioactive agents. US Patent 4,795,641Google Scholar
  20. Klausner E.A., Lavy E., Friedman M., Hoffman A. (2003). Expandable gastroretentive dosage forms. J. Contr. Rel. 90:143–162CrossRefGoogle Scholar
  21. Kojima M., Nakagami H. (2002). Development of controlled release matrix pellets by annealing with micronized water-insoluble or enteric polymers. J. Contr. Rel. 82:335–343CrossRefGoogle Scholar
  22. Kuo C.M., Curtis L.G. and Lucas P.L. 1994. Aqueous dispersion useful in coatings containing hydrolyzed cellulose ester and acrylic resin. US Patent 5,334,638Google Scholar
  23. Leuner C., Dressman J. (2000). Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 50:47–60CrossRefGoogle Scholar
  24. Levine D.S., Raisys V.A., Ainardi V. (1987). Coating of oral beclomethasone dipropionate capsules with cellulose acetate phthalate enhances delivery of topically active anti-inflammatory drug to the terminal ileum. Gastroenterology 92:1037–1044Google Scholar
  25. Liu J., Chan S.Y., Ho P.C. (2002). Polymer-coated microparticles for the sustained release of nitrofurantoin. J. Pharm. Pharmacol. 54:1205–1212CrossRefGoogle Scholar
  26. Lyu S.-P., Sparer R., Hobot C., Dang K. (2005). Adjusting drug diffusivity using miscible polymer blends. J. Contr. Rel. 102:679–687CrossRefGoogle Scholar
  27. Makhija S.N., Vavia P.R. (2003). Controlled porosity osmotic pump-based controlled release systems of pseudoephedrine. I. Cellulose acetate as a semipermeable membrane. J. Contr. Rel. 89:5–18CrossRefGoogle Scholar
  28. Malm C.J., Emerson J., Hiatt G.D. (1951). Cellulose acetate phthalate as an enteric coating material. J. Am. Pharm. Assoc. 40:520–525Google Scholar
  29. Malm C.J., Fordyce C.R. (1940). Cellulose esters of dibasic organic acids. Ind. Eng. Chem. 32:405–408CrossRefGoogle Scholar
  30. Malm C.J., Mench J.W., Fulkerson B., Hiatt G.D. (1957). Preparation of phthalic acid esters of cellulose. Ind. Eng. Chem. 49:84–88CrossRefGoogle Scholar
  31. Mathiowitz E., Jacob J.S., Jong Y.S., Carino G.P., Chickering D.E., Chaturvedi P., Santos C.A., Vijayaraghavan K., Montgomery S., Bassett M., Morrell C. (1997). Biologically erodable microspheres as potential oral drug delivery systems. Nature 386:410–414CrossRefGoogle Scholar
  32. Moretti M.D.L., Gavini E., Juliano C., Pirisino G., Giunchedi P. (2001). Spray-dried microspheres containing ketoprofen formulated into capsules and tablets. J. Microencapsul. 18: 111–121CrossRefGoogle Scholar
  33. Nokhodchi A. and Farid D. 2002. Microencapsulation of paracetamol by various emulsion techniques using cellulose acetate phthalate. Pharm. Tech. 54–60Google Scholar
  34. Obeidat W.M., Price J.C. (2003). Viscosity of polymer solution phase and other factors controlling the dissolution of theophylline microspheres prepared by the emulsion solvent evaporation method. J. Microencapsul. 20:57–65CrossRefGoogle Scholar
  35. Obeidat W.M., Price J.C. (2004). Evaluation of enteric matrix microspheres prepared by emulsion-solvent evaporation using scanning electron microscopy. J. Microencapsul. 21: 47–57CrossRefGoogle Scholar
  36. Omidian H., Rocca J.G., Park K. (2005). Advances in superporous hydrogels. J. Contr. Rel. 102:3–12CrossRefGoogle Scholar
  37. Palmieri G.F., Bonacucina G., Di Martino P., Martelli S. (2002). Gastro-resistant microspheres containing ketoprofen. J. Microencapsul. 19:111–119CrossRefGoogle Scholar
  38. Palmieri G.F., Michelini S., Di Martino P., Martelli S. (2000). Polymers with pH-dependent solubility: possibility of use in the formulation of gastroresistant and controlled-release matrix tablets. Drug Dev. Ind. Pharm. 26: 837–845CrossRefGoogle Scholar
  39. Pongpaibul Y., Whitworth C.W. (1986a). Microencapsulation by emulsion non-solvent addition method. Drug Dev. Ind. Pharm. 12: 2387–2402Google Scholar
  40. Pongpaibul Y., Whitworth C.W. (1986b). Preparation and in vitro dissolution characteristics of propranolol microcapsules. Int. J. Pharm. 33: 243–248CrossRefGoogle Scholar
  41. Prapaitrakul W., Whitworth C.W. (1989). Microencapsulation of phenylpropanolamine to achieve sustained release. J. Microencapsul. 6: 213–218Google Scholar
  42. Santus G., Baker R.W. (1995). Osmotic drug delivery: a review of the patent literature. J. Contr. Rel. 35: 1–21CrossRefGoogle Scholar
  43. Sarisuta N., Kumpugdee M., Müller B.W., Puttipipatkhachorn S. (1999). Physico-chemical characterization of interactions between erythromycin and various film polymers. Int. J. Pharm. 186: 109–118CrossRefGoogle Scholar
  44. Schultz P., Kleinebudde P. (1997). A new multiparticulate delayed release system. Part I: Dissolution properties and release mechanism. J. Contr. Rel. 47:181–189CrossRefGoogle Scholar
  45. Sertsou G., Butler J., Scott A., Hempenstall J., Rades T. (2002). Factors affecting incorporation of drug into solid solution with HPMCP during solvent change co-precipitation. Int. J. Pharm. 245:99–108CrossRefGoogle Scholar
  46. Shukla A.J., Price J.C. (1991). Effect of drug loading and molecular weight of cellulose acetate propionate on the release characteristics of theophylline microspheres. Pharm. Res. 8:1396–1400CrossRefGoogle Scholar
  47. Singhal D., Curatolo W. (2004). Drug polymorphism and dosage form design: a practical perspective. Adv. Drug Del. Rev. 56: 335–347CrossRefGoogle Scholar
  48. Soppimath K.S., Kulkarni A.R., Aminabhavi T.M. (2001). Development of hollow microspheres as floating controlled-release systems for cardiovascular drugs: preparation and release characteristics. Drug Devel. Ind. Pharm. 27: 507–515CrossRefGoogle Scholar
  49. Sprockel O.L., Prapaitrakul W. (1990). A comparison of microencapsulation by various emulsion techniques. Int. J. Pharm. 58: 123–127CrossRefGoogle Scholar
  50. Sprockel O.L., Prapaitrakul W., Shivanand P. (1990). Permeability of cellulose polymers: water vapor transmission rates. J. Pharm. Pharmacol. 42: 152–157Google Scholar
  51. Sprockel O.L., Price J.C. (1989). Evaluation of sustained release aqueous suspensions containing microencapsulated drug-resin complexes. Drug Dev. Ind. Pharm. 15: 1275–1287Google Scholar
  52. Stithit S., Chen W., Price J.C. (1998). Development and characterization of buoyant theophylline microspheres with near zero order release kinetics. J. Microencapsul. 15: 725–737CrossRefGoogle Scholar
  53. Tanno F., Nishiyama Y., Kokubo H., Obara S. (2004). Evaluation of hypromellose acetate succinate (HPMCAS) as a carrier in solid dispersions. Drug Dev. Ind. Pharm. 30: 9–17CrossRefGoogle Scholar
  54. Theeuwes F. (1975). Elementary osmotic pump. J. Pharm. Sci. 64:1987–1991CrossRefGoogle Scholar
  55. Theeuwes F. (1983). Oros® osmotic system development. Drug Dev. Ind. Pharm. 9:1331–1357Google Scholar
  56. Thoma K., Bechtold K. (1999). Influence of aqueous coatings on the stability of enteric coated pellets and tablets. Eur. J. Pharm. Biopharm. 47: 39–50CrossRefGoogle Scholar
  57. Vaithiyalingam S., Reddy I.K., Khan M.A., Guven N. (2001). Aqueous-based cellulose acetate butyrate dispersion: screening of process and formulation variables to obtain verapamil HCl-controlled release tablets. Part. Sci. Tech. 19: 131–144CrossRefGoogle Scholar
  58. Vazquez-Torres H., Cruz-Ramos C.A. (1994). Blends of cellulose esters with poly(caprolactone): characterization by DSC, DMA and WAXS. J. Appl. Poly. Sci. 54: 1141–1159CrossRefGoogle Scholar
  59. Verma R.K., Mishra B., Garg S. (2000). Osmotically controlled oral drug delivery. Drug Dev. Ind. Pharm. 26:695–708CrossRefGoogle Scholar
  60. Watts P.J., Illum L. (1997). Colonic drug delivery. Drug Dev. Ind. Pharm. 23: 893–913CrossRefGoogle Scholar
  61. Wilson A.K., Posey-Dowty J. and Kelley S.S. 1996a. Controlled release matrix system using cellulose acetate/poly-2-ethyl-2-oxazoline blends. US Patent 5,536,505Google Scholar
  62. Wilson A.K., Posey-Dowty J. and Kelley S.S. 1996b. Controlled release matrix system using cellulose acetate/polyvinylpyrrolidone blends. US Patent 5,523,095Google Scholar
  63. Wu C.Y., Benet L.Z. (2005). Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm. Res. 22: 11–23CrossRefGoogle Scholar
  64. Wu S.H.W., Wyatt D.M., Adams M.W. (1997). Chemistry and applications of cellulosic polymers for enteric coatings of solid dosage forms. In: McGinity J.W. (ed) Aqueous Coatings for Pharmaceutical Dosage Forms. Marcel Dekker, New York, pp. 385–418Google Scholar
  65. Xu X., Lee P.I. (1993). Programmable drug delivery from an erodible association polymer system. Pharm. Res. 10: 1144–1152CrossRefGoogle Scholar
  66. Yang M., Cui F., You B., You J., Wang L., Zhang L., Kawashima Y. (2004). A novel pH-dependent gradient release delivery system for nitrendipine I. Manufacturing, evaluation in vitro and bioavailability in healthy dogs. J. Contr. Rel. 98: 219–229Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Eastman Chemical CompanyKingsportUSA

Personalised recommendations