Skip to main content

Potential Technologies to Develop Cellulose Beads and Microspheres

  • Chapter
  • First Online:
Regenerated Cellulose and Composites

Abstract

Consumers, food packaging, and pharmaceutical industry are increasingly demanding products made of raw materials obtained from renewable and sustainable resources that are biodegradable, non-petroleum based, carbon neutral, and have low environmental, health and safety risks. Cellulose macro- and nanofibers are attractive biopolymers of almost inexhaustible quantity, obtained from wood, hemp, cotton, linen, etc., have been expansively used as engineering materials for thousands of years and their use continues today in the fabrication of advanced pharmaceuticals. Cellulose is a lightweight and biodegradable material with outstanding strength, stiffness, and hydrophilic in nature has been rigorously investigated as a reinforcing component in design of various drug carriers including composite, beads, and microspheres. Moreover, polysaccharides fabricated into hydrophilic matrices remain popular biomaterials for controlled or sustained release oral and targeted drug delivery systems among them most extensively modified cellulose used are hydroxypropylmethyl cellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, etc. Additionally, microcrystalline cellulose, sodium carboxymethyl cellulose, ethyl cellulose, oxycellulose, ethyl hydroxyethyl cellulose, and cellulose were obtained from plant sources explored by food and pharmaceuticals manufacturers. Microspheres and beads are orally modified in multiple unit dosage forms, however, fabrication of these drug carriers has always been a more effective therapeutic alternative to synthetic non-biodegradable excipients. This chapter summarizes an overview of the processing structure property perspective on the recent advances in synthetic and natural cellulose and their derivatized form with emphasized application in the development of beads and microsphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GIT:

Gastrointestinal tract

NCMC:

Nano carboxymethyl cellulose

G:

Standard gravity

g:

Gram

g cm3 g:

Per cubic centimeter

h:

Hour

K:

Kelvin

M:

Molar, mol dm−3

M:

Meter

m2g−1:

Square meter per gram

min:

Minute

mol:

Mole, ∼6.022 × 1023

s−1:

Reciprocal seconds

V:

Volt

W:

Watt

–COOH:

Carboxylic acid group

µ_:

Micro, 10−6

ACB:

Anionic cellulose bead

AG:

Anionic group

AGU:

Anhydroglucose unit

API:

Active pharmaceutical ingredient

CMC:

Carboxymethyl cellulose

CO2:

Carbon dioxide

DMS:

Trans-4-[4-(Dimethyl-amino)styryl]-1-methylpyridinium iodide

DPν:

Viscosity average degree of polymerization

DS:

Degree of substitution

DSC:

Differential scanning calorimeter

EC:

Ethyl cellulose

FTIR:

Fourier transform infrared spectrometer

HEMA:

Poly(hydroxyethyl methacrylate)

HPC:

Hydroxypropyl cellulose

HPMC:

Hydroxypropyl methylcellulose

Wt:

Weight

UDP:

Uridinediphosphate

THF:

Tetrahydrofuran

DMF:

Dimethylformamide

DMI:

1,3-Dimethyl-2-imidazolidinone

DMA:

Dimethylacetal

CNF:

Cellulose nanofibril

CNC:

Cellulose nanocomposites

MS:

Molar substitution

FDA:

Food and Drug Administration

LCST:

Lower Critical Solution Temperature

NaCMC:

Sodium carboxymethylcellulose

NaCl:

Sodium chloride

US EPA:

United States Environmental Protection Agency

L:

Liter

g/L:

Gram per liter

nm:

Nanometer

rpm:

Revolution per minute

L/min:

Liter per minute

%:

Percentage

References

  1. Payen, A.: Mémoire sur la composition du tissu propre des plantes et du ligneux. (Memoir on the composition of the tissue of plants and of woody [material]). Comptes Rendus Hebdomadaires des Séances de l’Académie des Sci-ences, 7, 7 (1838). https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=1640572. Accessed 26 Jun 2022

  2. Fisher, C.H.: Anselm payen pioneer in natural polymers and industrial chemistry. Pioneers Polym. Sci. 47–61 (1989)

    Google Scholar 

  3. Isik, M., Sardon, H., Mecerreyes, D.: Ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials. Int. J. Mol. Sci. 15, 11922–11940 (2014)

    Google Scholar 

  4. Graf, E.: Ullmann’s encyclopedia of industrial chemistry; Fifth Compl. Revis. Edit. Vol.’s A 3 and A 4 Ed’s W. Gerhartz (executive), Y. St. Yamamoto (Senior Ed.), F. T. Campbell, R. Pfefferkorn und J. F. Rounsaville. VCH Verlagsges. Weinheim 1985, A 3 = 578 S., A 4. Pharm Unserer Zeit 16, 63–63 (1987)

    Google Scholar 

  5. David, M.: Applications of ionic liquids in polymer science and technology. Appl. Ion Liq. Polym. Sci. Technol. (2015). https://doi.org/10.1007/978-3-662-44903-5

    Article  Google Scholar 

  6. Hipsley, E.H.: Dietary “fibre” and pregnancy toxaemia. Br. Med. J. 2, 420–422 (1953)

    Article  CAS  Google Scholar 

  7. Kay, R.M.: Dietary fiber. J. Lipid Res. 2, 221–242 (1982)

    Article  Google Scholar 

  8. Trowell, H., Burkitt, D., Heaton, K.: Definitions of dietary fibre and fibre-depleted foods and disease. Academic, London pp 21– 30 Definitions of dietary fibre and fibre-depleted foods and disease (1985). https://www.iontosorb.cz/. Accessed 26 Jun 2022

  9. Antia, F.P.: Clinical dietetics and nutrition, 4th ed. Oxford University Press, Delhi (1997)

    Google Scholar 

  10. Kennedy, J.F., Phillips, G.O., Williams, P.A.: Cellulosics. Pulp, fibre, and environmental aspects. 509 (1993)

    Google Scholar 

  11. Klemm, D., Philipp, B., Heinze, T., Heinze, U., Wagenknect, W.: Comprehensive cellulose chemistry. Fundam. Anal. Methods. 1, 3 (1998)

    Google Scholar 

  12. Amalin Kavitha, A., Thomas Paul, K.A.P., Amalin Kavitha, A., Thomas Paul, K., Anilkumar, P.: Cellulose-derived materials for drug delivery applications. In: Sustainable Nanocellulose and Nanohydrogels from Natural Sources. Elsevier, pp. 367–390 (2020)

    Google Scholar 

  13. Oprea, M.V.S., Oprea, M., Voicu, S.I.: Recent advances in composites based on cellulose derivatives for biomedical applications. Carbohydr. Polym. 247, 116683 (2020)

    Google Scholar 

  14. Zhang, H., Luan, Q., Li, Y., Wang, J., Bao, Y., Tang, H., et al.: Fabrication of highly porous, functional cellulose-based microspheres for potential enzyme carriers. Int. J. Biol. Macromol. 199, 61–68 (2022)

    Google Scholar 

  15. Sibaja, M., Alvarado, P., Pereira, R., Moya, M.: Recent Advances in Environmentally Compatible Polymers. Elsevier (2001)

    Google Scholar 

  16. Friedrich Emil Brauns, D.A.B. The chemistry of lignin (1960). https://doi.org/10.1021/cr60047a005

  17. Schubert, W.J.: Lignin Biochemistry. Academic Press, New York and London (1956)

    Google Scholar 

  18. Asp, N.G.: Dietary fibre-definition, chemistry and analytical determination. Mol. Aspects Med. 9, 17–29 (1987)

    Article  CAS  Google Scholar 

  19. Jenkins, D.J., Wolever, T.M., Leeds, A.R., Gassull, M.A., Haisman, P., Dilawari, J., Goff, D.V., Metz, G.L., Alberti, K.G.: Dietary fibres, fibre analogues, and glucose tolerance: importance of viscosity. Br. Med. J. 1, 1392–1394 (1978)

    Google Scholar 

  20. Van Denffer, D., Schumacher, W., Magdefrau, K.E.F.: Excretory and secretory tissues. In: Strasbueger’s Textb. Bot., pp. 118–121 (1976)

    Google Scholar 

  21. Murtaza, G., Ahamd, M., Akhtar, N., Rasool, F.: A comparative study of various microencapsulation techniques: effect of polymer viscosity on microcapsule characteristics. Pak. J. Pharm. Sci. 22, 291–300 (2009)

    CAS  Google Scholar 

  22. Li, S.P., Kowarski, C.R., Feld, K.M., Grim, W.M. Recent advances in microencapsulation technology and equipment 14, 353–376 (2008). https://doi.org/10.3109/03639048809151975

  23. Mathew, S., Gayathridevi, S., Prasanth Vv, B.V.: Suitability of factorial design in determining the processing factors affecting entrapment efficiency of albumin microspheres|semantic scholar (2010). https://www.semanticscholar.org/paper/Suitability-of-Factorial-Design-in-Determining-the-Mathew-Gayathridevi/4aa0be06f9234b5824dc7d018da1536901358cab. Accessed 26 Jun 2022

  24. Vasir, J.K., Tambwekar, K., Garg, S.: Bioadhesive microspheres as a controlled drug delivery system. Int. J. Pharm. 255, 13–32 (2003)

    Article  CAS  Google Scholar 

  25. Hamad Farah, F.: Magnetic microspheres: a novel drug delivery system. J. Anal. Pharm. Res. (2016) https://doi.org/10.15406/JAPLR.2016.03.00067

  26. Mukund, J.Y., Kantilal, B.R., Sudhakar, R.N.: Floating microspheres: a review. Brazilian J. Pharm. Sci. 48, 17–30 (2012)

    Article  CAS  Google Scholar 

  27. HÄfeli, U.: Radioactive microspheres for medical applications, 213–248 (2001)

    Google Scholar 

  28. Lachman, L.A., Liberman, H.A., Kanig, L.: The Theory and Practice of Industrial Pharmacy, 3rd edn. Varghese Publishng House (1991)

    Google Scholar 

  29. Das, A.M., Ali, A.A., Hazarika, M.P.: Synthesis and characterization of cellulose acetate from rice husk: eco-friendly condition. Carbohydr. Polym. 112, 342–349 (2014)

    Article  CAS  Google Scholar 

  30. Cherian, B.M., Pothan, L.A., Nguyen-Chung, T., Mennig, G., Kottaisamy, M., Thomas, S.: A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. J. Agric. Food Chem. 56(14), 5617–5627 (2008)

    Google Scholar 

  31. Kalia, S., Kaur, B.S.K.I.: Cellulose fibers: bio- and nano-polymer composites. Kalia, S., Kaith, B.S., Kaur, I. (Eds.) Berlin, Heidelberg: Springer Berlin Heidelberg, p. 743 (2011). https://doi.org/10.1007/978-3-642-17370-7

  32. Abdul Khalil, H.P.S., Bhat, A.H., Ireana Yusra, A.F.: Green composites from sustainable cellulose nanofibrils: a review. Carbohydr. Polym. Elsevier Ltd., 87(2), 963–979 (2012). https://doi.org/10.1016/j.carbpol.2011.08.078

  33. Fernandes, E.M., Pires, R.A., Mano, J.F., Reis, R.L.: Bionanocomposites from lignocellulosic resources: properties, applications and future trends for their use in the biomedical field. Prog. Polym. Sci. Elsevier Ltd., 38(10–11), 1415–1441 (2013)

    Google Scholar 

  34. Oliveira de Castro, D., Frollini, E., Ruvolo-Filho, A., Dufresne, A.: “Green polyethylene” and Curauá Cellulose nanocrystal based nanocomposites: effect of vegetable oils as coupling agent and processing technique. J. Polym. Sci. Part B Polym. Phys. 20

    Google Scholar 

  35. Rehman, N., de Miranda, M.I.G., Rosa, S.M.L., Pimentel, D.M., Nachtigall, S.M.B., Bica, C.I.D.: Cellulose and nanocellulose from maize straw: an insight on the crystal properties. J. Polym. Environ. 22(2), 252–259 (2014)

    CAS  Google Scholar 

  36. Marin, D.C., Vecchio, A., Ludueña, L.N., Fasce, D., Alvarez, V.A., Stefani, P.M.: Revalorization of rice husk waste as a source of cellulose and silica. Fibers Polym. 16(2), 285–293 (2015). https://doi.org/10.1007/s12221-015-0285-5

  37. de Nunes, R.M., Guarda, E.A., Serra, J.C.V., Martins, Á.A.: Agro-industrial residues: second generation ethanol production potential in Brazil. Liberato Mag. 14(22), 135–150 (2014). https://revista.liberato.com.br/index.php/revist

  38. Chandrasekhar, S., Satyanarayana, K.G., Pramada, P.N., Raghavan, P., Gupta, T.N.: Processing, properties and applications of reactive silica from rice husk—an overview. J. Mater. Sci. 38, 3159–3168 (2003)

    Article  CAS  Google Scholar 

  39. Johar, N., Ahmad, I., Dufresne, A.: Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind. Crops Prod. 37, 93–99 (2012)

    Article  CAS  Google Scholar 

  40. Hafid, H.S., Omar, F.N., Zhu, J., Wakisaka, M.: Enhanced crystallinity and thermal properties of cellulose from rice husk using acid hydrolysis treatment. Carbohydr. Polym. 260, 117789 (2021)

    Article  CAS  Google Scholar 

  41. Yunus, M.A., Raya, I., Tuara, Z.I.: Synthesis cellulose from rice husk. Indones Chim Acta 12, 79–83 (2019)

    Google Scholar 

  42. Rosa, S.M.L., Rehman, N., De Miranda, M.I.G., Nachtigall, S.M.B., Bica, C.I.D.: Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr. Polym. 87, 1131–1138 (2012)

    Article  CAS  Google Scholar 

  43. Iguchi, M., Yamanaka, S., Budhiono, A.: Bacterial cellulose—a masterpiece of nature’s arts. J. Mater. Sci. 35, 261–270 (2000)

    Article  CAS  Google Scholar 

  44. Cannon, R.E., Anderson, S.M.: Biogenesis of bacterial cellulose. Crit. Rev. Microbiol. 17, 435–447 (1991)

    Article  CAS  Google Scholar 

  45. Puls, J., Wilson, S.A., Hölter, D.: Degradation of cellulose acetate-based materials: a review. J. Polym. Environ. 19, 152–165 (2011)

    Article  CAS  Google Scholar 

  46. Kono, H., Hashimoto, H., Shimizu, Y.: NMR characterization of cellulose acetate: chemical shift assignments, substituent effects, and chemical shift additivity. Carbohydr. Polym. 118, 91–100 (2015)

    Article  CAS  Google Scholar 

  47. Wu, J., Jun, Z., Hao, Z., Jiasong, H., Qiang, R., Guo, M.: Homogeneus acetylation of cellulosa in a new ionic liquid. Biomacromol 5, 1–5 (2014)

    Google Scholar 

  48. Xu, D., Edgar, K.J.: TBAF and cellulose esters: unexpected deacylation with unexpected regioselectivity. Biomacromol 13, 299–303 (2012)

    Article  CAS  Google Scholar 

  49. Li, J., Zhang, L.P., Peng, F., Bian, J., Yuan, T.Q., Xu, F., Sun, R.C.: Microwave-assisted solvent-free acetylation of cellulose with acetic anhydride in the presence of iodine as a catalyst. Molecules 14, 3551–3566 (2009)

    Article  CAS  Google Scholar 

  50. Keary, C.M.: Characterization of METHOCEL cellulose ethers by aqueous SEC with multiple detectors. Carbohydr. Polym. 45, 11 (2001)

    Article  Google Scholar 

  51. Arca, H.C., Mosquera-Giraldo, L.I., Bi, V., Xu, D., Taylor, L.S., Edgar, K.J.: Pharmaceutical applications of cellulose ethers and cellulose ether esters. Biomacromolecules 19, 2351–2376 (2018)

    Google Scholar 

  52. Brady, J., Drig, T., Lee, P.I., Li, J.X.: Polymer properties and characterization. Dev Solid Oral Dos Forms Pharm Theory Pract Second Ed (2017). https://doi.org/10.1016/B978-0-12-802447-8.00007-8

    Article  Google Scholar 

  53. Dürig, T., Karan, K.: Binders in wet granulation. Handb Pharm Wet Granulation Theory Pract a Qual by Des Paradig (2018). https://doi.org/10.1016/B978-0-12-810460-6.00010-5

    Article  Google Scholar 

  54. Trivedi, M.K., Branton, A., Trivedi, D., Nayak, G., Mishra, R.K., Jana, S.: Characterization of physicochemical and thermal properties of biofield treated ethyl cellulose and methyl cellulose. 3, 83–91 (2015)

    Google Scholar 

  55. Li, L.: Thermal gelation of methylcellulose in water: scaling and thermoreversibility. Macromolecules 35, 5990–5998 (2002)

    Article  CAS  Google Scholar 

  56. De Química, I., Estadual, U., Júlio, P., Filho, D.M.: Synthesis and characterization of methylcellulose produced from bacterial cellulose under heterogeneous condition. 26, 1861–1870 (2015)

    Google Scholar 

  57. Kamel, S., Ali, N., Jahangir, K., Shah, S.M., El-Gendy, A.A.: Pharmaceutical significance of cellulose: a review. Express Polym. Lett. 2, 758–778 (2008)

    Google Scholar 

  58. Isogai, A., Saito, T., Shibata, I., Yanagisawa, M., Kato, Y., Magara, K., Habu, N.: TEMPO-mediated oxidation of celluloses. Appita Annu. Conf. 2, 237–241 (2005)

    Google Scholar 

  59. Siepmann, J., Peppas, N.A.: Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev. 48, 139–157 (2001)

    Article  CAS  Google Scholar 

  60. Bhandari, P.N., Jones, D.D., Hanna, M.A.: Carboxymethylation of cellulose using reactive extrusion. Carbohydr. Polym. 87, 2246–2254 (2012)

    Article  CAS  Google Scholar 

  61. Setu, M.N.I., Mia, M.Y., Lubna, N.J., Chowdhury, A.A.: Preparation of microcrystalline cellulose from cotton and its evaluation as direct compressible excipient in the formulation of naproxen tablets. Dhaka Univ. J. Pharm. Sci. 13, 187–192 (2014)

    Article  Google Scholar 

  62. Håkansson, H., Ahlgren, P.: Acid hydrolysis of some industrial pulps: effect of hydrolysis conditions and raw material. Cellulose 12, 177–183 (2005)

    Article  Google Scholar 

  63. Hu, Y., Du, C., Leu, S.Y., Jing, H., Li, X., Lin, C.S.K.: Valorisation of textile waste by fungal solid state fermentation: an example of circular waste-based biorefinery. Resour. Conserv. Recycl. 129, 27–35 (2018)

    Article  Google Scholar 

  64. Pensupa, N., Jin, M., Kokolski, M., Archer, D.B., Du, C.: A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw. Bioresour. Technol. 149, 261–267 (2013)

    Article  CAS  Google Scholar 

  65. Ryu, C., Phan, A.N., Sharifi, V.N., Swithenbank, J.: Combustion of textile residues in a packed bed. Exp. Therm. Fluid Sci. 31, 887–895 (2007)

    Article  CAS  Google Scholar 

  66. Stanescu, M.D., Fogorasi, M., Dochia, M., Mihuta, S., Lozinsky, V.I.: Biotechnology for textile waste valorization. Rev. Chim 60, 59–62 (2009)

    CAS  Google Scholar 

  67. Li, C., Gao, S., Yang, X., Lin, C.S.K.: Green and sustainable succinic acid production from crude glycerol by engineered Yarrowia lipolytica via agricultural residue based in situ fibrous bed bioreactor. Bioresour. Technol. 249, 612–619 (2018)

    Article  CAS  Google Scholar 

  68. Singhania, R.R., Saini, J.K., Saini, R., Adsul, M., Mathur, A., Gupta, R., Tuli, D.K.: Bioethanol production from wheat straw via enzymatic route employing penicillium janthinellum cellulases. Bioresour. Technol. 169, 490–495 (2014)

    Article  CAS  Google Scholar 

  69. Singhania, R.R., Adsul, M., Pandey, A., Patel, A.K., Singhania, R.R., Adsul, M., Pandey, A., Patel, A.K.:. 4 - Cellulases. In: Current 27 Developments in Biotechnology and Bioengineering, Elsevier, pp. 73–101 (2017)

    Google Scholar 

  70. Jeihanipour, A., Karimi, K., Niklasson, C., Taherzadeh, M.J.: A novel process for ethanol or biogas production from cellulose in blended-fibers waste textiles. Waste Manage. 30, 2504–2509 (2010)

    Article  CAS  Google Scholar 

  71. Shen, F., Xiao, W., Lin, L., Yang, G., Zhang, Y., Deng, S.: Enzymatic saccharification coupling with polyester recovery from cotton-based waste textiles by phosphoric acid pretreatment. Bioresour. Technol. 130, 248–255 (2013)

    Article  CAS  Google Scholar 

  72. Raj, C., Arul, S., Sendilvelan, S., Saravanan, C.: Bio gas from textile cotton waste- an alternate fuel for diesel engines. Open Waste Manage. J. 2, 1–5 (2009)

    Google Scholar 

  73. Gholamzad, E., Karimi, K., Masoomi, M.: Effective conversion of waste polyester–cotton textile to ethanol and recovery of polyester by alkaline pretreatment. Chem. Eng. J. 253, 40–45 (2014)

    Article  CAS  Google Scholar 

  74. Kuo, C.-H., Lee, C.-K.: Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohyd. Polym. 77(1), 41–46 (2009)

    Article  CAS  Google Scholar 

  75. Sandin, G.; Peters, G.M., Sandin, G., Peters, G.M.: Environmental impact of textile reuse and recycling—a review. J. Clean. Prod. 184, 353–365 (2018)

    Google Scholar 

  76. Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A.: Cellulose: fascinating biopolymer and sustainable raw material. Chemin-, 36, 3358–3393 (2005)

    Google Scholar 

  77. Wang, S.; Lu, A., Zhang L.: Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 53, 169–206 (2016)

    Google Scholar 

  78. Abeer, M.M., Amin, M.C.I.M., Martin, C.: A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J. Pharm. Pharmacol. 66, 1047–1061 (2014)

    Google Scholar 

  79. Qiu, X., Hu, S.: “Smart” materials based on cellulose: a review of the preparations, properties, and applications. Materials 6, 738–781 (2013)

    Google Scholar 

  80. Zeng, B., Wang, X., Byrne, N.: Development of cellulose based aerogel utilizing waste denim—a morphology study. Carbohydr. Polym. 205, 1–7 (2019)

    Google Scholar 

  81. Ganesan, K., Budtova, T., Ratke, L., Gurikov, P., Baudron, V., Preibisch, I., Niemeyer, P., Smirnova, I., Milow, B.: Review on the production of polysaccharide aerogel particles. Materials 11, 2144 (2018)

    Google Scholar 

  82. Luo, X., Zhang, L.: Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications. J. Chromatogr. A 1217, 5922–5929 (2010)

    Google Scholar 

  83. Gericke, M., Trygg, J., Fardim, P.: Functional cellulose beads: preparation, characterization, and applications. Chem. Rev. 113, 4812–4836 (2013)

    Article  CAS  Google Scholar 

  84. Peng, S., Meng, H., Ouyang, Y., Chang, J.: Nanoporous magnetic cellulose–chitosan composite microspheres: preparation, characterization, and application for Cu(II) adsorption. Ind. Eng. Chem. Res. 53, 2106–2113 (2014)

    Google Scholar 

  85. Roy, I., Gupta, M.N.: Lactose hydrolysis by LactozymTM immobilized on cellulose beads in batch and fluidized bed modes. Process Biochem. 39, 325–332 (2003)

    Google Scholar 

  86. Lu, H., Luo, H., Leventis, N.: Aerogel Handbook. Springer, New York, NY, USA (2011)

    Google Scholar 

  87. Budtova, T.: Cellulose II aerogels: a review. Cellulose 26, 81–121 (2019)

    Article  CAS  Google Scholar 

  88. Sescousse, R., Gavillon, R., Budtova, T.: Wet and dry highly porous cellulose beads from cellulose–NaOH–water solutions: influence of the preparation conditions on beads shape and encapsulation of inorganic particles. J. Mater. Sci. 46, 759–765 (2010)

    Google Scholar 

  89. Trygg, J., Fardim, P., Gericke, M., Mäkilä, E., Salonen, J.: Physicochemical design of the morphology and ultrastructure of cellulose beads. Carbohydr. Polym. 93, 291–299 (2013)

    Article  CAS  Google Scholar 

  90. Druel, L.; Niemeyer, P., Milow, B., Budtova, T.: Rheology of cellulose-[DBNH][CO2Et] solutions and shaping into aerogel beads. Green Chem. 20, 3993–4002 (2018)

    Google Scholar 

  91. Ishimura, D., Morimoto, Y., Saito, H.: Influences of chemical modifications on the mechanical strength of cellulose beads. Cellulose 5, 135–151 (1998)

    Google Scholar 

  92. Biganska, O., Navard, P.: Morphology of cellulose objects regenerated from cellulose–N-methylmorpholine N-oxide–water solutions. Cellulose 16, 179–188 (2008)

    Google Scholar 

  93. Trygg, J., Yildir, E., Kolakovic, R., Sandler, N., Fardim, P.: Anionic cellulose beads for drug encapsulation and release. Cellulose 21, 1945–1955 (2014)

    Article  CAS  Google Scholar 

  94. Yildir, E., Kolakovic, R., Genina, N., Trygg, J., Gericke, M., Hanski, L., Ehlers, H., Rantanen, J., Tenho, M., Vuorela, P.,. et al.: Tailored beads made of dissolved cellulose—investigation of their drug release properties. Int. J. Pharm. 456, 417–442 (2013)

    Google Scholar 

  95. Pircher, N., Carbajal, L., Schimper, C., Bacher, M., Rennhofer, H., Nedelec, J.-M., Lichtenegger, H., Rosenau, T., Liebner, F.: Impact of selected solvent systems on the pore and solid structure of cellulose aerogels. Cellulose 23, 1949–1966 (2016)

    Google Scholar 

  96. Sescousse, R., Gavillon, R., Budtova, T.: Aerocellulose from cellulose–ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohydr. Polym. 83, 1766–1774 (2011)

    Google Scholar 

  97. Wang, Z., Liu, S., Matsumoto, Y., Kuga, S.: Cellulose gel and aerogel from LiCl/DMSO solution. Cellulose 19, 393–399 (2012)

    Google Scholar 

  98. Innerlohinger, J., Weber, H.K., Kraft, G.: Aerocellulose: aerogels and aerogel-like materials made from cellulose. In Macromolecular Symposia; Wiley Online Library: Weinheim, Germany, vol. 244, pp. 126–135 (2006)

    Google Scholar 

  99. Sailaja, E.V.R., Shrestha, A.K.: Preparation and evaluation of aspirin loaded microspheres by solvent evaporation technique. J. Med. Biol. 1, 27–32 (2019)

    Google Scholar 

  100. Johansson, C., Bras, J., Mondragon, I., et al.: Renewable fibers and bio-based materials for packaging applications—a review of recent developments. BioResources 7, 2506–2552 (2012)

    Article  Google Scholar 

  101. Habibi, Y., Lucia, L.A., Rojas, O.J.: Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110, 3479–3500 (2010)

    Article  CAS  Google Scholar 

  102. Eichhorn, S.J., Dufresne, A., Aranguren, M., et al.: Review: current international research into cellulose nanofibres and nanocomposites. J Mater. Sci. 45, 1–33 (2010)

    Article  CAS  Google Scholar 

  103. Jawaid, M., Abdul Khalil, H.P.S.: Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr. Polym. 86, 1–18 (2011)

    Google Scholar 

  104. Klemm, D., Heublein, B., Fink, H.P., Bohn, A.: Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chemie – Int. Ed 44, 3358–3393 (2005)

    Article  CAS  Google Scholar 

  105. Shen, L., Patel, M.K.: Life cycle assessment of polysaccharide materials: a review. J. Polym. Environ. 16, 154–167 (2008)

    Article  CAS  Google Scholar 

  106. Stevens, E.S.: Green plastics: an introduction to the new science of biodegradable plastics. J. Chem. Educ. 79, 1072 (2002)

    Article  Google Scholar 

  107. John, M.J., Thomas, S.: Biofibres and biocomposites. Carbohydr. Polym. 71, 343–364 (2008)

    Article  CAS  Google Scholar 

  108. Heinze, T., Liebert, T., Koschella, A.: Esterification of Polysaccharides. Esterification of Polysaccharides (2006). https://doi.org/10.1007/3-540-32112-8

    Article  Google Scholar 

  109. Heinze, T., Liebert, T.: Unconventional methods in cellulose functionalization. Prog. Polym. Sci. 26, 1689–1762 (2001)

    Article  CAS  Google Scholar 

  110. Fox, S.C., Li, B., Xu, D., Edgar, K.J.: Regioselective esterification and etherification of cellulose: a review. Biomacromol 12, 1956–1972 (2011)

    Article  CAS  Google Scholar 

  111. Cellufine|Chromatography for purification of Antibody, Vaccine, Bio medicine. https://www.jnc-corp.co.jp/fine/en/cellufine/. Accessed 26 Jun 2022

  112. O’Neill, J.J. Jr., Reichardt, E.P.: U.S. Patent 2,543,928 (1951)

    Google Scholar 

  113. Zafar, A., Afzal, M., Quazi, A.M., et al.: Chitosan-ethyl cellulose microspheres of domperidone for nasal delivery: preparation, in-vitro characterization, in-vivo study for pharmacokinetic evaluation and bioavailability enhancement. J. Drug. Deliv. Sci. Technol. 63, 102471 (2021)

    Article  CAS  Google Scholar 

  114. Zhang, W., Wang, X.C., Li, X.Y., Zhang, L.L., Jiang, F.: A 3D porous microsphere with multistage structure and component based on bacterial cellulose and collagen for bone tissue engineering. Carbohydr. Polym. 236, 116043 (2020)

    Google Scholar 

  115. Wu, S., Gong, Y., Liu, S., Pei, Y., Luo, X.: Functionalized phosphorylated cellulose microspheres: design, characterization and ciprofloxacin loading and releasing properties. Carbohydr. Polym. (2021). https://doi.org/10.1016/j.carbpol.2020.117421

    Article  Google Scholar 

  116. Sun, X., Shen, J., Yu, D., Ouyang, X.K.: Preparation of pH-sensitive Fe3O4@C/carboxymethyl cellulose/chitosan composite beads for diclofenac sodium delivery. Int. J. Biol. Macromol. 127, 594–605 (2019)

    Article  CAS  Google Scholar 

  117. Xie, F., Fardim, P., Van den Mooter, G.: Porous soluble dialdehyde cellulose beads: a new carrier for the formulation of poorly water-soluble drugs. Int. J. Pharm. 615, 121491 (2022)

    Article  CAS  Google Scholar 

  118. Karzar Jeddi, M., Mahkam, M.: Magnetic nano carboxymethyl cellulose-alginate/chitosan hydrogel beads as biodegradable devices for controlled drug delivery. Int. J. Biol. Macromol. 135, 829–838 (2019)

    Google Scholar 

  119. Gholamali, I., Yadollahi, M.: Doxorubicin-loaded carboxymethyl cellulose/Starch/ZnO nanocomposite hydrogel beads as an anticancer drug carrier agent. Int. J. Biol. Macromol. 160, 724–735 (2020)

    Article  CAS  Google Scholar 

  120. Shah, A., Kuddushi, M., Mondal, K., Jain, M., Malek, N.: Magnetically driven release of dopamine from magnetic-non-magnetic cellulose beads. J. Mol. Liq. 320, 114290 (2020)

    Article  CAS  Google Scholar 

  121. Mbituyimana, B., Liu, L., Ye, W., Ode Boni, B.O., Zhang, K., Chen, J,, Thomas, S., Vasilievich, R.V., Shi, Z., Yang, G.: Bacterial cellulose-based composites for biomedical and cosmetic applications: research progress and existing products. Carbohydr. Polym. 273, 118565 (2021)

    Google Scholar 

  122. Tanpichai, S., Boonmahitthisud, A., Soykeabkaew, N., Ongthip, L.: Review of the recent developments in all-cellulose nanocomposites: properties and applications. Carbohydr. Polym. 286, 119192 (2022)

    Article  CAS  Google Scholar 

  123. Shi, Z., Zhang, Y., Phillips, G.O., Yang, Y.G.: Utilization of bacterial cellulose in food. Food Hydrocolloids 35, 539–545 (2014). https://doi.org/10.1016/j.foodhyd.2013.07.012

    Article  CAS  Google Scholar 

  124. Mohite, B.V., Patil, S.V., Mohite, B.V., Patil, S.V.: A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol. Appl. Biochem. 61, 101–110 (2014). https://doi.org/10.1002/bab.1148

    Article  CAS  Google Scholar 

  125. Fontana, J.D., Koop, H.S., Tiboni, M., Grzybowski, A., Pereira, A., Kruger, C.D.: et al.: New insights on bacterial cellulose. In: Grumezescu, A.M., Holban, A.M. (eds.) Food biosynthesis, pp. 213–249. Academic Press, Cambridge (2017). https://doi.org/10.1016/C2016-0-0

  126. Lin, K.W., Lin, H.Y.: Quality characteristics of Chinese-style meatball containing bacterial cellulose (Nata). J. Food Sci. 69, Q107–Q111 (2004). https://doi.org/10.1111/j.1365-2621.2004.tb13378.x

    Article  Google Scholar 

  127. Dankovich, T.A., Gray, D.G.: Contact angle measurements on smooth nanocrystalline cellulose (I) thin films. J. Adhes. Sci. Technol. 25, 699–708 (2011). https://doi.org/10.1163/016942410X525885

    Article  CAS  Google Scholar 

  128. Lindman, B., Karlstrom, G., Stigsson, L.: On the mechanism of dissolution of cellulose. J. Mol. Liquids 156, 76–81 (2010). https://doi.org/10.1016/j.molliq.2010.04.016

    Article  CAS  Google Scholar 

  129. Kalashnikova, I., Bizot, H., Cathala, B., Capron, I.: New Pickering emulsions stabilized by bacterial cellulose nanocrystals. Langmuir 27, 7471–7479 (2011). https://doi.org/10.1021/la200971f

    Article  CAS  Google Scholar 

  130. Yan, H., Chen, X., Song, H., Li, J., Feng, Y., Shi, Z., et al.: Synthesis of bacterial cellulose and bacterial cellulose nanocrystals for their applications in the stabilization of olive oil Pickering emulsion. Food Hydrocolloids 72, 127–135 (2017).

    Google Scholar 

  131. Paximada, P., Tsouko, E., Kopsahelis, N., Koutinas, A.A., Mandala, I.: Bacterial cellulose as stabilizer of o/w emulsions. Food Hydrocolloids 53, 225–232 (2016). https://doi.org/10.1016/j.foodhyd.2014.12.003

    Article  CAS  Google Scholar 

  132. Okiyama, A., Motoki, M., Yamanaka, S.: Bacterial cellulose IV. Application to processed foods. Food Hydrocolloids 6, 503–511.https://doi.org/10.1016/S0268-005X(09)80074-X

  133. Chandra R, Rustgi, R.: Biodegradable polymers program polymer science. Prog. Polym. Sci. 23, 1273–1335 (1998)

    Google Scholar 

  134. Jayasekara, R., Harding, I., Bowater, I., Christie, G.B.Y., Jayasekara, G.T.L.R., Harding, I., Bowater, I., Christie, G.B.Y., Lonergan, G.T.: Preparation, surface modification and characterization of solution cast starch PVA blended films. Polym. Test. 23, 17–27 (2003)

    Article  Google Scholar 

  135. Selke, S.E.: Plastics recycling and biodegradable plastics. In: Harper, C.A. (Ed.) Modern Plastics Handbook, Chapter 12, pp. 11–108. McGraw—Hill, New York (2000)

    Google Scholar 

  136. Weber, C.J., Haugaard, V., Festersen, R., Bertelsen, G.: Production and applications of biobased packaging materials for the food industry. Food Addit. Contam. 19(4 Suppl.), 172–177 (2002)

    Article  CAS  Google Scholar 

  137. Tekade, B.W., Jadhao, U.T., Thakre, V.M., Chaudhari, K.P., Meshram, P.R., Patil, M.: Invitro evaluation of azithromycin microspheres by solvent evaporation technique. Int. J. Pharm. Phytopharmacol. Res. 3(1):68–73 (2013)

    Google Scholar 

  138. Shivane, P., Sridevi, G., Gopkumar, P., Pillai, S.: Formulation and evaluation of sustain release microsphere of Tretinoin for the treatment of Acne vulgarise. Asian J. Res. Chem. 6(10), 1089 (2013)

    Google Scholar 

  139. Belwal, S., Joshi, D., Rautela, A., Kumar, P.: Formulation and evaluation of microsphere of Aceclofenac. JAP 1(1), 65–70 (2020)

    Google Scholar 

  140. Rokhade, A.P., Agnihotri, S.A., Patil, S.A., Mallikarjuna, N.N., Kulkarni, P.V., Aminabhavi, T.M.: Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohyd. Polym. (2006)

    Google Scholar 

  141. Giunchedi, P., Conti, B., Maggi, L., Conte, U.: Cellulose acetate butyrate and polycaprolactone for ketoprofen spray-dried microsphere preparation. J. Microencapsulation. 11(4), 381–393 (1994)

    Google Scholar 

  142. Soppimath, K.S., Kulkarni, A.R., Aminabhavi, T.M.: Encapsulation of antihypertensive drugs in cellulose-based matrix microspheres: characterization and release kinetics of microspheres and tableted microspheres. J. Microencapsul. 18(3), 397 (2001)

    Google Scholar 

  143. Guyot, M., Fawaz, F.: Nifedipine loaded-polymeric microspheres: preparation and physical characteristics. Int. J. Pharm. 175(1), 61–74 (1998)

    Google Scholar 

  144. Bodmeier, R., Chen, H., Tyle, P., Jarosz, P.: Pseudoephedrine HCl microspheres formulated into an oral suspension dosage form. J. Controlled Release 15(1), 65–77 (1991)

    Google Scholar 

  145. Pande, A.V., Vaidya, P.D., Arora, A. Dhoka, M.V.: In vitro and in vivo evaluation of ethyl cellulose based floating microspheres of cefpodoxime proxetil. Int. J. Pharm. Biomed. Res. 1(4), 122–128 (2010)

    Google Scholar 

  146. Sahoo, S.K., Barik, S., Dehury, G., Dhala, S., Kanungo, S., Barik, B.B., Puhan, K.K.: Evaluation of controlled release theophylline microspheres prepared with cellulose acetate using solvent evaporation method. Trop. J. Pharm. Res. 10(2) (2011)

    Google Scholar 

  147. Angadi, S.C., Manjeshwar, L.S., Aminabhavi, T.M.: Interpenetrating polymer network blend microspheres of chitosan and hydroxyethyl cellulose for controlled release of isoniazid. Int. J. Biol. Macromol. 47(2), 171–179 (2010)

    Google Scholar 

  148. Choudhury, P.K., Kar, M.: Controlled release metformin hydrochloride microspheres of ethyl cellulose prepared by different methods and study on the polymer affected parameters. J. Microencapsul. 26(1), 46–53 (2009)

    Google Scholar 

  149. Mazumder, B., Dey, S., Bhattacharya, S., Sarkar, S., Mohanta, B.: Studies on formulation and characterization of cellulose-based microspheres of chlorpheniramine maleate. Arch. Pharm. Sci. Res. 1, 66–74 (2009)

    Google Scholar 

  150. Kim, M.H., An, S., Won, K., Kim, H.J., Lee, S.H.: Entrapment of enzymes into cellulose–biopolymer composite hydrogel beads using biocompatible ionic liquid. 75(none), 68–72 (2012). https://doi.org/10.1016/j.molcatb.2011.11.011

  151. Anirudhan, T.S., Manjusha, V., Chithra Sekhar, V.: A new biodegradable nano cellulose-based drug delivery system for pH-controlled delivery of curcumin. Int. J. Biol. Macromol. 183, 2044–2054 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupendra G. Prajapati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kendre, P.N., Lokwani, D., Pote, A., Singh, S., Jayeoye, T.J., Prajapati, B.G. (2023). Potential Technologies to Develop Cellulose Beads and Microspheres. In: Shabbir, M. (eds) Regenerated Cellulose and Composites. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-1655-9_6

Download citation

Publish with us

Policies and ethics