Skip to main content
Log in

Applying data mining techniques to higher-dimensional Poincaré maps in the circular restricted three-body problem

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Poincaré maps are regularly used to facilitate rapid and informed trajectory design within multi-body systems. However, maps that capture a general set of spatial trajectories are often higher-dimensional and, as a result, challenging for a human to analyze. This paper addresses this challenge by employing techniques from data mining. Specifically, distributed clustering, dimension reduction and classification are used in combination to construct a data-driven approach to autonomously group higher-dimensional crossings on a Poincaré map according to the geometry of the associated trajectories generated over a short time interval. This procedure is demonstrated using a periapsis map that captures spatial trajectories at a single energy level in the Sun-Earth circular restricted three-body problem. Arcs along hyperbolic invariant manifolds associated with families of tori in the \(L_{1}\) and \(L_{2}\) gateways are also projected onto this clustering result to rapidly extract their fundamental geometries. Together, these examples demonstrate the potential for the presented data-driven approach to facilitate analysis of a complex solution space reflected on a higher-dimensional Poincaré map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aggarwal, C., Reddy, C.: Data Clustering: Algorithms and Applications. Ch. 2.1.2, 3, 9.2, Chapman and Hall CRC (2018)

  • Ali, M., Jones, M., Xie, X., Williams, M.: TimeCluster: dimension reduction applied to temporal data for visual analytics. Vis. Comput. 35, 1013–1026 (2019)

    Article  Google Scholar 

  • Becht, E., McInnes, L., Healy, J., Dutertre, C., Kwok, I., Ng, L., Ginhoux, F., Newell, E.: Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019)

    Article  Google Scholar 

  • Bendechache, M., Le-Khac, N., Kechadi, M.: Efficient large scale clustering based on data partitioning. In: 2016 IEEE International Conference on Data Science and Advanced Analytics, pp. 612–621, Montreal, QC, Canada (2016)

  • Bonasera, S., Bosanac, N.: Applications of clustering to higher-dimensional Poincaré maps in multi-body systems. In: 30th AIAA/AAS Space Flight Mechanics Meeting, Orlando, FL (2020a)

  • Bonasera, S., Bosanac, N.: Unsupervised learning to aid visualization of higher-dimensional Poincaré maps in multi-body trajectory design. In: 2020 AAS/AIAA Astrodynamics Specialist Conference, Lake Tahoe, CA (Virtual) (2020b)

  • Bosanac, N.: Leveraging natural dynamical structures to explore multi-body systems. Ph.D. thesis, Purdue University, West Lafayette, IN (2016)

  • Bosanac, N.: Data mining approach to Poincaré maps in multi-body trajectory design. J. Guid. Control Dyn. 43(6), 1190–1200 (2020)

    Article  ADS  Google Scholar 

  • Bosanac, N., Cox, A., Howell, K., Folta, D.: Trajectory design for a cislunar cubesat leveraging dynamical systems techniques: the Lunar IceCube mission. Acta Astronaut. 144, 283–296 (2018)

    Article  ADS  Google Scholar 

  • Campello RJGB, Moulavi D, Sander J (2013) Density-based clustering based on hierarchical density estimates. In: Pei J, Tseng VS, Cao L, Motoda H, Xu G (eds) Advances in knowledge discovery and data mining. PAKDD 2013. Lecture Notes in Computer Science, vol 7819. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37456-2_14

  • Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D., Hill, A., Zhang, F., Mundlos, S., Christiansen, L., Steemers, F., Trapnell, C., Shendure, J.: The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019)

    Article  ADS  Google Scholar 

  • Cichosz, P.: Data Mining Algorithms: Explained Using R. John Wiley and Sons, West Sussex (2015)

    Book  Google Scholar 

  • Conley, C.: Low energy transit orbits in the restricted three-body problem. SIAM J. Appl. Math. 16(4), 732–746 (1968)

    Article  MathSciNet  Google Scholar 

  • Contopoulos, G.: Order and Chaos in Dynamical Astronomy. Springer, Berlin (2002)

    Book  Google Scholar 

  • Davis, D.C.: Multi-body trajectory design strategies based on periapsis Poincaré maps. Ph.D. thesis, Purdue University, West Lafayette, IN (2011)

  • Davis, D., Phillips, S., McCarthy, B.: Trajectory design for saturnian ocean worlds orbiters using multidimensional Poincaré maps. Acta Astronaut. 143, 16–28 (2018)

    Article  ADS  Google Scholar 

  • Delshams, A., Gidea, M., Roldan, P.: Arnold’s mechanism of diffusion in the spatial circular restricted three-body problem: a semi-analytical argument. Phys. D Nonlinear Phenom. 334, 29–48 (2016)

  • Gómez, G., Mondelo, J.: The dynamics around the collinear equilibrium points of the RTBP. Physica D 157(4), 283–321 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  • Gómez, G., Masdemont, J., Mondelo, J.M.: Libration point orbits: a survey from the dynamical point of view. In: Proceedings of the Libration Point Orbits and Applications, Aiguablava, Spain (2003)

  • Gómez, G., Koon, W., Lo, M., Marsden, J., Masdemont, J., Ross, S.: Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity 17, 1571–1606 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  • Haapala, A.: Trajectory design in the spatial circular restricted three-body problem exploiting higher-dimensional Poincare maps. PhD thesis, Purdue University, West Lafayette, IN (2014)

  • Hadjighasem, A., Karrasch, D., Teramoto, H., Haller, G:. Spectral-clustering approach to Lagrangian vortex detection. Phys. Rev. E 93(6) (2016)

  • Han, J., Kamber, M.: Data mining: concepts and techniques, Second Edition. Ch.7, Proquest EBook Central: Elsevier Science and Technology, Waltham, MA (2006)

  • Han, J., Kamber, M., Pei, J.: Data mining concepts and techniques, Third Edition. Ch. 9.5, Morgan Kaufmann (2014)

  • Ivezić, Z., Connolly, A., VanderPlas, J., Gray, A.: Statistics, data mining, and machine learning in astronomy: a practical python guide for the analysis of survey data, updated edition. Ch. 9.4, Princeton University Press (2019)

  • Jorba, Á.: Numerical computation of the normal behavior of invariant curves of n-dimensional maps. Nonlinearity 14(5), 943–976 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Dynamical Systems, the Three Body Problem and Space Mission Design. Marsden Books, New-York (2011)

    MATH  Google Scholar 

  • Li, X., Dyck, O., Oxley, M., Lupini, A., McInnes, L., Healy, J., Jesse, S., Kalinin, S.: Manifold Learning of four-dimensional scanning transmission electron microscopy. npj Comput. Mater., 5 (2019)

  • MathWorks MATLAB. Natick, MA, USA (2020)

  • McInnes, L., Healy, J., Astels, S.: hdbscan: hierarchical density based clustering. J. Open Source Softw., 2(11) (2017)

  • McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction. ArXiv e-prints. 1802, 03426 (2018)

  • Mommert, M., Trilling, D., Hora, J., Lejoly, C., Gustafsson, A., Knight, M., Moskovitz, N., Smith, H.: Systematic characterization of and search for activity in potentially active asteroids. Planet. Sci. J. 1(1), 1–14 (2020)

    Article  Google Scholar 

  • Moulavi, D., Jaskowiak, P., Campello, R., Zimek, A., Sander, J.: Density-based cluster validation. In: Proceedings of the SIAM International Conference on Data Mining, Philadelphia, PA (2014)

  • Nakhjiri, N., Villac, B.F.: Automated stable region generation, detection, and representation for applications to mission design. Celest. Mech. Dyn. Astron. 123(1), 63–83 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • Olikara, Z., Scheeres, D.: Numerical methods for computing quasi-periodic orbits and their stability in the restricted three-body problem. In: IAA Conference on Dynamics and Control of Space Systems, Porto, Portugal (2012)

  • Paskowitz, M., Scheeres, D.: Robust capture and transfer trajectories for planetary satellite orbiters. J. Guid. Control Dyn. 29(2), 342–353 (2006)

    Article  ADS  Google Scholar 

  • Perko, L.: Differential Equations and Dynamical Systems, 2nd edn. Springer, New-York (1996)

    Book  Google Scholar 

  • Smith, T., Bosanac, N.: Constructing a set of motion primitives in the circular restricted three-body problem via clustering. In: AAS/AIAA Astrodynamics Specialist Conference, Portland, ME (2019)

  • Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, London (1967)

    MATH  Google Scholar 

  • Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems. Springer, Berlin (1996)

    Book  Google Scholar 

  • Villac, B., Scheeres, D.: Escaping trajectories in the Hill three-body problem and applications. J. Guid. Control Dyn. 26(2), 224–232 (2003)

    Article  ADS  Google Scholar 

  • Villac, B., Scheeres, D.: On the concept of periapsis in Hill’s problem. Celest. Mech. Dyn. Astronaut. 90, 165–178 (2004)

  • Villac, B., Anderson, R., Pini, A.: Computer aided ballistic orbit classification around small bodies. J. Astronaut. Sci. 63(3), 175–205 (2016)

    Article  ADS  Google Scholar 

  • Wenskovitch, J., Crandell, I., Ramakrishnan, N., House, L., Leman, S., North, C.: Towards a systematic combination of dimension reduction and clustering in visual analytics. IEEE Trans. Vis. Comput. Gr.aph 24(1), 131–141 (2018)

    Article  Google Scholar 

  • Zheng, Y. Zhou, X.: Computing with Spatial Trajectories. Ch. 2, Springer New York (2011)

Download references

Acknowledgements

This work was completed at the University of Colorado Boulder, partially funded under NASA Grant 80NSSC18K1536. The authors thank the anonymous reviewers for their feedback.

Funding

This work was completed at the University of Colorado Boulder, partially funded under NASA Grant 80NSSC18K1536.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natasha Bosanac.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

An earlier version of this paper was presented in January 2020 as Paper AIAA 2020-2178 at the 30th AIAA/AAS Space Flight Mechanics Meeting in Orlando, FL.

Appendices

11 Appendix 1

See Figs. 13 and 14.

Fig. 13
figure 13

Subset of representatives for global clustering result summarizing trajectories associated with prograde perigees and generated for up to three returns to a perigee map in the Sun-Earth CR3BP at \(C_{J}\) = 3.00088, with the libration points displayed as magenta diamonds

Fig. 14
figure 14

Subset of representatives for global clustering result summarizing trajectories associated with prograde perigees and generated for up to three returns to a perigee map in the Sun-Earth CR3BP at \(C_{J}\) = 3.00088, with the libration points displayed as magenta diamonds

12 Appendix 2

See Table 1.

Table 1 Truncated period, initial state and stable and unstable eigenvalues, \(\lambda _{S}\) and \(\lambda _{U}\), respectively, of the monodromy matrix for the Lyapunov and vertical orbits at \(L_1\) and \(L_2\) in the Sun-Earth CR3BP at \(C_J = 3.00088\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonasera, S., Bosanac, N. Applying data mining techniques to higher-dimensional Poincaré maps in the circular restricted three-body problem. Celest Mech Dyn Astr 133, 51 (2021). https://doi.org/10.1007/s10569-021-10047-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-021-10047-3

Keywords

Navigation