Skip to main content
Log in

Automated stable region generation, detection, and representation for applications to mission design

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

This paper presents an automated algorithm to extract dynamical features, such as stability constraints, from phase space maps. The functional representation of these constraints allows their inclusion in optimization problems and thus expands the use of dynamical tools in space mission design. The challenge to autonomously detect the regions of interest in stability maps is discussed through utilizing image processing algorithms to cluster map data. Additionally, to use the detected regions, both discrete and smooth functional representations are studied. Based on similar clustering techniques that have been considered in extracting and representing features of phase space maps, we proposed an adaptively map generation algorithm. It creates a nonuniform grid of points on a map which is denser near the boundaries of the regions of interest. Both representation and map generation algorithms provide significant performance enhancements in phase space analysis. All these techniques are illustrated on examples of stability maps in small body dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. An end node or leaf is a node with no children.

  2. Note that neighbors in a quadtree structure refers to the spatial neighboring blocks, and not to the adjacent nodes as in an abstract tree.

  3. The depth of the tree is equivalent to the level of the tree where all nodes are end nodes (leaves).

  4. In Sect. 2, we mentioned that the trend of change in FLI value indicates the stability property of the trajectory.

References

  • Bale R.A., Grossman J.P., Margrave G.F., Lamoureux M.P.: Multidimensional partitions of unity and Gaussian terrains. In: Tech. Rep. 42, vol. 14, CREWES Research Report (2002)

  • Bosanac, N., Howell, K., Fischbach, E.: Stability of orbits near large mass ratio binary systems. Celest. Mech. Dyn. Astron. 122(1), 27–52 (2015). doi:10.1007/s10569-015-9607-6

    Article  MathSciNet  ADS  Google Scholar 

  • Colombi, A., Hirani, A., Villac, B.: Structure preserving approximations of conservative forces for application to small-body dynamics. J. Guid. Control Dyn. 32(6), 1847–1858 (2009). doi:10.2514/1.42067

    Article  ADS  Google Scholar 

  • Davis, K., Anderson, R., Scheeres, D., Born, G.: The use of invariant manifolds for transfers between unstable periodic orbits of different energies. Celest. Mech. Dyn. Astron. 107(4), 471–485 (2010). doi:10.1007/s10569-010-9285-3

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Froeschlé, C., Lega, E.: On the structure of symplectic mappings. The fast Lyapunov indicator: a very sensitive tool. Celest. Mech. Dyn. Astron. 78(1–4), 167–195 (2009). doi:10.1023/A:1011141018230

    ADS  Google Scholar 

  • Froeschlé, C., Lega, E., Gonczi, R.: Fast Lyapunov indicators. Application to asteroidal motion. Celest. Mech. Dyn. Astron. 67(1), 41–62 (1997)

    Article  ADS  MATH  Google Scholar 

  • Gelfand, I.M., Fomin, S.V.: Calculus of Variations (Dover Books on Mathematics). Dover Publications, Mineola (2000)

    Google Scholar 

  • Haralick, R.M., Shapiro, L.G.: Image segmentation techniques. Comput. Vision Gr. Image Process. 29(1), 100–132 (1985). doi:10.1016/S0734-189X(85)90153-7

    Article  Google Scholar 

  • Hénon, M.: Numerical exploration of the restricted problem, V. Astron. Astrophys. 1, 223–238 (1969)

    ADS  MATH  Google Scholar 

  • Howell, K., Beckman, M., Patterson, C., Folta, D.: Representations of invariant manifolds for applications in three-body systems. J. Astron. Sci. 54(1), 69–93 (2006). doi:10.1007/BF03256477

    Article  MathSciNet  Google Scholar 

  • Howell, K.C., Davis, D.C., Haapala, A.F.: Application of periapse maps for the design of trajectories near the smaller primary in multi-body regimes. Math. Probl. Eng. (2011). doi:10.1155/2012/351759

  • Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data (Prentice Hall Advanced Reference Series : Computer Science), 1st edn. Prentice Hall, Upper Saddle River (1988)

    Google Scholar 

  • Kolemen, E., Kasdin, N., Gurfil, P.: Multiple poincaré sections method for finding the quasiperiodic orbits of the restricted three body problem. Celest. Mech. Dyn. Astron. 112(1), 47–74 (2012). doi:10.1007/s10569-011-9383-x

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lam, T., Whiffen, G.J.: Exploration of distant retrograde orbits around Europa. Adv. Astron. Sci. 120, 135–153 (2005)

    Google Scholar 

  • Lara, M., Scheeres, D.J.: Stability bounds for three-dimensional motion close to asteroids. J. Astron. Sci. 50(4), 389–409 (2002)

    MathSciNet  Google Scholar 

  • Lara, M., Russell, R., Villac, B.: Classification of the distant stability regions at Europa. J. Guid. Control Dyn. 30(2), 409–418 (2007). doi:10.2514/1.22372

    Article  ADS  Google Scholar 

  • Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. Ser. B Biol. Sci. 207(1167), 187–217 (1980). doi:10.1098/rspb.1980.0020

    Article  ADS  Google Scholar 

  • Mondelo, J.M., Broschart, S.B., Villac, B.F.: Dynamical analysis of 1: 1 resonances near asteroids: application to vesta. In: AIAA/AAS Astrodynamics Specialists Conference (2010). doi:10.2514/6.2010-8373

  • Nakhjiri, N., Villac, B.: Optimization of stable multi-impulse transfers. In: AAS/AIAA Astrodynamics Specialist Conference, Girdwood, Alaska, Paper AAS 11–559 (2011)

  • Pavlidis, T.: Structural Pattern Recognition. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  • Scott, C.J., Spencer, D.B.: Calculating transfer families to periodic distant retrograde orbits using differential correction. J. Guid. Control Dyn. 33(5), 1592–1605 (2010). doi:10.2514/1.47791

    Article  ADS  Google Scholar 

  • Short C., Blazevski D., Howell K., Haller G.: Stretching in phase space and applications in general nonautonomous multi-body problems. Celest. Mech. Dyn. Astron. 122, 213–238 (2015). doi:10.1007/s10569-015-9617-4

  • Sousa Silva, P., Terra, M.: Diversity and validity of stable–unstable transitions in the algorithmic weak stability boundary. Celest. Mech. Dyn. Astron. 113(4), 453–478 (2012). doi:10.1007/s10569-012-9418-y

    MathSciNet  ADS  Google Scholar 

  • Szeliski, R.: Computer Vision Algorithms and Applications. Springer, Berlin (2010)

    Google Scholar 

  • Tsirogiannis, G.: A graph based methodology for mission design. Celest. Mech. Dyn. Astron. 114(4), 353–363 (2012). doi:10.1007/s10569-012-9444-9

    Article  MathSciNet  ADS  Google Scholar 

  • Villac, B.: A homotopy approach to lambert problem around small-bodies: applications to close proximity operations (AAS 11–055). Adv. Astron. Sci. 141(1), 355–370 (2007)

    Google Scholar 

  • Villac, B.: Impulsive transfer strategies along stable periodic orbit families. Adv. Astron. Sci. 130(2), 2097–2114 (2008a)

    Google Scholar 

  • Villac, B.: Using FLI maps for preliminary spacecraft trajectory design in multi-body environments. Celest. Mech. Dyn. Astron. 102(1–3), 29–48 (2008b). doi:10.1007/s10569-008-9158-1

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Villac B., Liu K.: Long-term stable orbits for passive tracking beacon missions to asteroids. In: 60th International Astronautical Congress, Paper IAC-09.C1.10.6 (2009)

Download references

Acknowledgments

Partial support for this research has been provided by the National Aeronautics and Space Administration, Astrodynamics Research Grant, In-Space Propulsion Technology Development program (Grant No. NNX13AH03G) and is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid Nakhjiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakhjiri, N., Villac, B. Automated stable region generation, detection, and representation for applications to mission design. Celest Mech Dyn Astr 123, 63–83 (2015). https://doi.org/10.1007/s10569-015-9629-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-015-9629-0

Keywords

Navigation