Advertisement

Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2015

  • B. A. Archinal
  • C. H. Acton
  • M. F. A’Hearn
  • A. Conrad
  • G. J. Consolmagno
  • T. Duxbury
  • D. Hestroffer
  • J. L. Hilton
  • R. L. Kirk
  • S. A. Klioner
  • D. McCarthy
  • K. Meech
  • J. Oberst
  • J. Ping
  • P. K. Seidelmann
  • D. J. Tholen
  • P. C. Thomas
  • I. P. Williams
Article

Abstract

This report continues the practice where the IAU Working Group on Cartographic Coordinates and Rotational Elements revises recommendations regarding those topics for the planets, satellites, minor planets, and comets approximately every 3 years. The Working Group has now become a “functional working group” of the IAU, and its membership is open to anyone interested in participating. We describe the procedure for submitting questions about the recommendations given here or the application of these recommendations for creating a new or updated coordinate system for a given body. Regarding body orientation, the following bodies have been updated: Mercury, based on MESSENGER results; Mars, along with a refined longitude definition; Phobos; Deimos; (1) Ceres; (52) Europa; (243) Ida; (2867) Šteins; Neptune; (134340) Pluto and its satellite Charon; comets 9P/Tempel 1, 19P/Borrelly, 67P/Churyumov–Gerasimenko, and 103P/Hartley 2, noting that such information is valid only between specific epochs. The special challenges related to mapping 67P/Churyumov–Gerasimenko are also discussed. Approximate expressions for the Earth have been removed in order to avoid confusion, and the low precision series expression for the Moon’s orientation has been removed. The previously online only recommended orientation model for (4) Vesta is repeated with an explanation of how it was updated. Regarding body shape, text has been included to explain the expected uses of such information, and the relevance of the cited uncertainty information. The size of the Sun has been updated, and notation added that the size and the ellipsoidal axes for the Earth and Jupiter have been recommended by an IAU Resolution. The distinction of a reference radius for a body (here, the Moon and Titan) is made between cartographic uses, and for orthoprojection and geophysical uses. The recommended radius for Mercury has been updated based on MESSENGER results. The recommended radius for Titan is returned to its previous value. Size information has been updated for 13 other Saturnian satellites and added for Aegaeon. The sizes of Pluto and Charon have been updated. Size information has been updated for (1) Ceres and given for (16) Psyche and (52) Europa. The size of (25143) Itokawa has been corrected. In addition, the discussion of terminology for the poles (hemispheres) of small bodies has been modified and a discussion on cardinal directions added. Although they continue to be used for planets and their satellites, it is assumed that the planetographic and planetocentric coordinate system definitions do not apply to small bodies. However, planetocentric and planetodetic latitudes and longitudes may be used on such bodies, following the right-hand rule. We repeat our previous recommendations that planning and efforts be made to make controlled cartographic products; newly recommend that common formulations should be used for orientation and size; continue to recommend that a community consensus be developed for the orientation models of Jupiter and Saturn; newly recommend that historical summaries of the coordinate systems for given bodies should be developed, and point out that for planets and satellites planetographic systems have generally been historically preferred over planetocentric systems, and that in cases when planetographic coordinates have been widely used in the past, there is no obvious advantage to switching to the use of planetocentric coordinates. The Working Group also requests community input on the question submitting process, posting of updates to the Working Group website, and on whether recommendations should be made regarding exoplanet coordinate systems.

Keywords

Cardinal directions Cartographic coordinates Coordinate systems Coordinate frames Longitude Latitude Planetographic Planetocentric Rotation axes Rotation periods Sizes Shapes Planets Satellites Dwarf planets Minor planets Asteroids Comets 

Notes

Acknowledgements

We appreciate useful input from Nat Bachman, Jack Drummond, Tony Farnham, William Folkner, Rose Hayward, Kenneth Herkenhoff, Robert Jacobson, Laurent Jorda, Alex Konopliv, Janet Richie, Boris Semenov, Michael Shepard, and Alexander Stark. Archinal received support under a NASA-U. S. Geological Survey Interagency agreement. In memory of Michael A’Hearn, who passed away on May 29, 2017, Mike made significant contributions to not only this report, but provided outstanding service to our Working Group and the International Astronomical Union for many years.

References

  1. Anderson, J.D., Schubert, G.: Saturn’s Gravitational Field, Internal Rotation, and Interior Structure. Science 317, 1384–1387 (2007).  https://doi.org/10.1126/science.1144835 ADSCrossRefGoogle Scholar
  2. Archinal, B.A., The Lunar Geodesy and Cartography Working Group: Activities of the NASA LPRP Lunar Geodesy and Cartography Working Group, LPI XL, Abstract #2095 (2009)Google Scholar
  3. Archinal, B.A., A’Hearn, M.F., Bowell, E., Conrad, A., Consolmagno, G.J., Courtin, R., Fukushima, T., Hestroffer, D., Hilton, J.L., Krasinsky, G.A., Neumann, G., Oberst, J., Seidelmann, P.K., Stooke, P., Tholen, D.J., Thomas, P.C., Williams, I.P.: Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009. Cel. Mech. Dyn. Ast. 109(2), 101–135 (2011a).  https://doi.org/10.1007/s10569-010-9320-4. https://link.springer.com/article/10.1007%2Fs10569-010-9320-4. Accessed 1 Sept 2017
  4. Archinal, B.A., A’Hearn, M.F., Conrad, A., Consolmagno, G.J., Courtin, R., Fukushima, T., Hestroffer, D., Hilton, J.L., Krasinsky, G.A., Neumann, G., Oberst, J., Seidelmann, P.K., Stooke, P., Tholen, D.J., Thomas, P.C., Williams, I.P.: Erratum to: Reports of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2006 and 2009. Cel. Mech. Dyn. Ast. 110(4), 401–403 (2011b).  https://doi.org/10.1007/s10569-011-9362-2. https://link.springer.com/article/10.1007%2Fs10569-011-9362-2. Accessed 1 Sept 2017
  5. Archinal, B.A., Becker, T.L., Lee, E.M., Edmundson, K.L.: Initial Global Control Network and Mosaicking of ISS Images of Titan, LPI XLIV, Abstract #2957 (2013a)Google Scholar
  6. Archinal, B.A., Acton, C.H., A’Hearn, M.F., Conrad, A., Consolmagno, G.J., Duxbury, T., Hestroffer, D., Hilton, J.L., Jorda, L., Kirk, R., Klioner, S.A., McCarthy, D., Meech, K., Oberst, J., Ping, J., Seidelmann, P.K., Tholen, D.J., Thomas, P.C., Williams, I.P.: Recommended coordinate system for (4) Vesta, published by the IAU Working Group on Cartographic Coordinates and Rotational Elements (2013b). https://astropedia.astrogeology.usgs.gov/download/Docs/WGCCRE/IAU-WGCCRE-Coordinate-System-for-Vesta.pdf. Accessed 1 Sept 2017
  7. Archinal, B.A., Edmundson, K.L., Kirk, R.L., Gaddis, L.R.: Registering Planetary Datasets for Data Fusion: A “Force Multiplier” for Planetary Science, LPS XLVII, Abstract #2377 (2016)Google Scholar
  8. Aron, J.: Dawn departs Vesta to become first asteroid hopper. New Scientist, 6 Sept 2012. https://www.newscientist.com/blogs/shortsharpscience/2012/09/asteroid-hopping-spacecraft-ma.html. Accessed 1 Sept 2017
  9. Becker, T.L., Bland, M.T., Edmundson, K.L., Soderblom, L.A., Takir, D., Patterson, G.W., Collins, G.C., Pappalardo, R.T., Roatsch, T., Schenk, P.M.: Completed Global Control Network and Basemap of Enceladus, LPS XLVII, Abstract #2342 (2016a)Google Scholar
  10. Becker, K.J., Robinson, M.S., Becker, T.L., Weller, L.A., Edmundson, K.L., Neumann, G.A., Perry, M.E., Solomon, S.C.: First Global Digital Elevation Model of Mercury, LPS XLVII, Abstract #2959 (2016b)Google Scholar
  11. Belton, M.J.S., Meech, K.J., Chesley, S.: 68 co-authors: Stardust-NExT, Deep Impact, and the accelerating spin of 9P/Tempel 1. Icarus 213, 345–368 (2011).  https://doi.org/10.1016/j.icarus.2011.01.006 ADSCrossRefGoogle Scholar
  12. Belton, M.J.S., Thomas, P., Li, J.-Y., Williams, J., Carcich, B., A’Hearn, M.F., McLaughlin, S., Farnham, T., McFadden, L., Lisse, C.M., Collins, S., Besse, S., Klaasen, K., Sunshine, J., Meech, K.J., Lindler, D.: The complex spin state of 103P/Hartley 2: Kinematics and orientation in space. Icarus 222, 595–609 (2013).  https://doi.org/10.1016/j.icarus.2012.06.037 ADSCrossRefGoogle Scholar
  13. Besse, S., Lamy, P., Jorda, L., Marchi, S., Barbieri, C.: Identification and physical properties of craters on Asteroid (2867) Steins. Icarus 221, 1119–1129 (2012).  https://doi.org/10.1016/j.icarus.2012.08.008 ADSCrossRefGoogle Scholar
  14. Burmeister, S., Willner, K., Schmidt, V., Oberst, J.: Determination of Phobos’ Rotational Parameters by an Inertial Frame Bundle Block Adjustment. J. Geodesy (2018, in press)Google Scholar
  15. Carry, B., Dumas, C., Kaasalainen, M., Berthier, J., Merline, W.J., Erard, S., Conrad, A., Drummond, J.D., Hestroffer, D., Fulchignoni, M., Fusco, T.: Physical properties of (2) Pallas. Icarus 205, 460–472 (2010).  https://doi.org/10.1016/j.icarus.2009.08.007 ADSCrossRefGoogle Scholar
  16. Cassini Project: Planetary Constants (PcK) SPICE kernel. March 30 (2016). http://naif.jpl.nasa.gov/pub/naif/CASSINI/kernels/pck/cpck30Mar2016.tpc. See “BODY606_RADII”. Accessed 1 Sept 2017
  17. Conrad, A.R., Dumas, C., Merline, W.J., Drummond, J.D., Campbell, R.D., Goodrich, R.W., Le Mignant, D., Chaffee, F.H., Fusco, T., Kwok, S.H., Knight, R.I.: Direct measurement of the size, shape, and pole of 511 Davida with Keck AO in a single night. Icarus 191, 616–627 (2007).  https://doi.org/10.1016/j.icarus.2007.05.004 ADSCrossRefGoogle Scholar
  18. Davies, M.E., Colvin, T.R.: Lunar coordinates in the regions of the Apollo landers. JGR 105(E8), 20277–20280 (2000)ADSCrossRefGoogle Scholar
  19. Davies, M.E., Abalakin, V.K., Cross, C.A., Duncombe, R.L., Masursky, H., Morando, B., Owen, T.C., Seidelmann, P.K., Sinclair, A.T., Wilkins, G.A., Tjuflin, Y.S.: Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites. Celest. Mech. 22, 205–230 (1980)ADSMathSciNetCrossRefGoogle Scholar
  20. Davies, M.E., Abalakin, V.K., Lieske, J.H., Seidelmann, P.K., Sinclair, A.T., Sinzi, A.M., Smith, B.A., Tjuflin, Y.S.: Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 1982. Celest. Mech. 29, 309–321 (1983)ADSCrossRefGoogle Scholar
  21. Davies, M.E., Abalakin, V.K., Bursa, M., Lederle, T., Lieske, J.H., Rapp, R.H., Seidelmann, P.K., Sinclair, A.T., Teifel, V.G., Tjuflin, Y.S.: Report of the IAU/IAG COSPAR Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 1985. Celest. Mech. 39, 103–113 (1986)ADSCrossRefGoogle Scholar
  22. Davies, M.E., Abalakin, V.K., Bursa, M., Hunt, G.E., Lieske, J.H., Morando, B., Rapp, R.H., Seidelmann, P.K., Sinclair, A.T., Tjuflin, Y.S.: Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 1988. Celest. Mech. Dyn. Astron. 46, 187–204 (1989)ADSCrossRefGoogle Scholar
  23. Davies, M.E., Abalakin, V.K., Brahic, A., Bursa, M., Chovitz, B.H., Lieske, J.H., Seidelmann, P.K., Sinclair, A.T., Tjuflin, Y.S.: Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 1991. Celest. Mech. Dyn. Astron. 53, 377–397 (1992)ADSCrossRefGoogle Scholar
  24. Davies, M.E., Abalakin, V.K., Bursa, M., Lieske, J.H., Morando, B., Seidelmann, P.K., Sinclair, A.T., Yallop, B., Tjuflin, Y.S.: Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 1994. Celest. Mech. Dyn. Astron. 63, 127–148 (1996)ADSCrossRefGoogle Scholar
  25. de Vaucouleurs, G., Davies, M.E., Sturms Jr., F.M.: Mariner 9 areographic coordinate system. JGR 78, 4395–4404 (1973)ADSCrossRefGoogle Scholar
  26. Dobrovolskis, A.R.: Chaotic rotation of nereid? Icarus 118, 118–198 (1995)CrossRefGoogle Scholar
  27. Drummond, J.D., Merline, W.J., Carry, B., Conrad, A., Reddy, V., Tamblyn, P., Chapman, C.R., Enke, B.L. de Pater, I., de Kleer, K., Christou, J., Dumas, C.: The triaxial ellipsoid size, density, and rotational pole of asteroid (16) psyche from keck and gemini AO observations 2004–2015. Icarus (2018, in press)Google Scholar
  28. Duxbury, T.: Recommended new Models for Mars Spin Axis and Rate, Chairman, Mars Program Office Geodesy and Cartography Working Group, GMU Memo to B. Archinal, Chairman IAU Working Group on Cartographic Coordinates and Rotational Elements, December 3 (2013)Google Scholar
  29. Duxbury, T.: Recommended new Models for Mars, Phobos and Deimos Orientation Expressions, Chairman, Mars Program Office Geodesy and Cartography Working Group, GMU Memo to B. Archinal, Chairman IAU Working Group on Cartographic Coordinates and Rotational Elements, draft received 2017 August 18Google Scholar
  30. Duxbury, T.C., Kirk, R., Archinal, B.A.: Mars geodesy/cartography working group recommendations on mars cartographic constants and coordinate systems. ISPRS WG IV/9: Extraterrestrial Mapping Workshop “Planetary Mapping 2001”, virtual workshop (2001). See https://astrogeology.usgs.gov/groups/ISPRS for on-line abstract. Accessed 1 Sept 2017
  31. Duxbury, T.C., Kirk, R.L., Archinal, B.A., Neumann, G.A.: Mars Geodesy/Cartography Working Group Recommendations on Mars Cartographic Constants and Coordinate Systems, ISPRS, 34, part 4, “Geospatial Theory, Processing and Applications,” Ottawa (2002). http://www.isprs.org/proceedings/XXXIV/part4/pdfpapers/521.pdf
  32. Duxbury, T.C., Christensen, P., Smith, D.E., Neumann, G.A., Kirk, R.L., Caplinger, M.A., Albee, A.A., Seregina, N.V., Neukum, G., Archinal, B.A.: The location of Airy-0, the Mars prime meridian reference, from stereo photogrammetric processing of THEMIS IR imaging and digital elevation data. J. Geophys. Res. Planets 119(12), 2471–2486 (2014).  https://doi.org/10.1002/2014JE004678 ADSCrossRefGoogle Scholar
  33. Farnham, T.L., Thomas, P.C., Plate Shape Model of Comet 9P/Tempel 1 V2.0, DIF-C-HRIV/ITS/MRI-5-TEMPEL1-SHAPE-MODEL-V2.0. NASA Planetary Data System (2013a)Google Scholar
  34. Farnham, T.L., Thomas, P.C., Plate Shape Model of Comet 103P/Hartley 2 V1.0, DIF-C-HRIV/MRI-5-HARTLEY2-SHAPE-V1.0. NASA Planetary Data System (2013b)Google Scholar
  35. Folkner, W.M., Williams, J.G., Boggs, D.H.: The planetary and lunar ephemeris DE 421. IPN Progress Report 42-178, August 15 (2009). https://ipnpr.jpl.nasa.gov/progress_report/42-178/178C.pdf. Accessed 1 Sept 2017
  36. Folkner, W.M., Williams, J.G., Boggs, D.H.: The planetary and lunar ephemeris DE 421. JPL Memorandum IOM 343R-08-003, 31 March (2008). https://ssd.jpl.nasa.gov/pub/eph/planets/ioms/de421.iom.v1.pdf. Accessed 1 Sept 2017
  37. Folkner, W.M., Williams, J.G., Boggs, D.H., Park, R.S., Kuchynka, P.: The planetary and lunar ephemerides DE430 and DE431. IPN Progress Report 42-196, February 15 (2014). https://ipnpr.jpl.nasa.gov/progress_report/42-196/196C.pdf. Accessed 1 Sept 2017
  38. Fujiwara, A., Kawaguchi, J., Yeomans, D.K., Abe, M., Mukai, T., Okada, T., Saito, J., Yano, H., Yoshikawa, M., Scheeres, D.J., Barnouin-Jha, O., Cheng, A.F., Demura, H., Gaskell, R.W., Hirata, N., Ikeda, H., Kominato, T., Miyamoto, H., Nakamura, A.M., Nakamura, R., Sasaki, S., Uesugi, K.: The rubble-pile asteroid Itokawa as observed by Hayabusa. Science 312, 1330–1334 (2006)ADSCrossRefGoogle Scholar
  39. Giampieri, G., Dougherty, M.K., Smith, E.J., Russell, C.T.: A regular period for Saturn’s magnetic field that may track its internal rotation. Nature 441, 62–64 (2006)ADSCrossRefGoogle Scholar
  40. Gurnett, D.A., Persoon, A.M., Kurth, W.S., Groene, J.B., Averkamp, T.F., Dougherty, M.K., Southwood, D.J.: The Variable Rotation period of the Inner Region of Saturn’s Plasma Disk. Science 316, 442–445 (2007)ADSCrossRefGoogle Scholar
  41. Haberreiter, M., Schmutz, W., Kosovichev, A.G.: Solving the discrepancy between the seismic and photospheric solar radius. ApJ 675, L53–L56 (2008)ADSCrossRefGoogle Scholar
  42. Hall, J.S., Sagan, C., Middlehurst, B., Pettengill, G.H.: Commission 16: Physical Study of Planets and Satellites, Report of Meetings: 20, 24, 25, and 26 August 1970. In: de Jager, C., Jappel, A. (eds.) Proceedings of the Fourteenth General Assembly Brighton 1970, 128–137. D. Reidel Publishing Company, Dordrecht (1971)Google Scholar
  43. International Astronomical Union (IAU): Proceedings of the sixteenth general assembly. Transactions of the IAU, XVI B, D. Reidel Publishing Company, Dordrecht (1977). A copy of the 1976 IAU Resolutions including the “IAU (1976) System of Astronomical Constants” is available on-line as https://www.iau.org/static/resolutions/IAU1976_French.pdf. Accessed 1 Sept 2017
  44. International Astronomical Union (IAU): IAU information bulletin 109, 41 (2012). https://www.iau.org/static/publications/IB109.pdf. Accessed 1 Sept 2017
  45. International Astronomical Union (IAU): Resolution B2 on recommended nominal conversion constants for selected solar and planetary properties (2015a). https://www.iau.org/static/resolutions/IAU2015_English.pdf. Accessed 1 Sept 2017
  46. International Astronomical Union (IAU): Working Group for Planetary System Nomenclature (WGPSN) and International Astronomical Union Committee on Small Body Nomenclature: Dwarf Planets and their Systems (2015b). https://planetarynames.wr.usgs.gov/append7.html#DwarfPlanets. Accessed 1 Sept 2017
  47. IAU Executive Committee: Summary of IAU Executive Committee Meeting in May 2016 (2016). https://www.iau.org/static/archives/announcements/pdf/ann16029a.pdf. Accessed 1 Sept 2017
  48. Jacobson, R.A.: The orbits of the neptunian satellites and the orientation of the pole of neptune. Astron. J. 137, 4322–4329 (2009).  https://doi.org/10.1088/0004-6256/137/5/4322 ADSCrossRefGoogle Scholar
  49. Jorda, L., Lamy, P.L., Gaskell, R.W., Kaasalainen, G.O., Besse, S., Faury, G.: Asteroid (2867) steins: shape, topography and global physical properties from OSIRIS observations. Icarus 221, 1089–1100 (2012).  https://doi.org/10.1016/j.icarus.2012.07.035 ADSCrossRefGoogle Scholar
  50. Jorda, L., Gaskell, R., Capanna, C., Hviid, S., Lamy, P., Durech, J., Faury, G., Groussin, O., Gutiérrez, P., Jackman, C., Keihm, S.J., Keller, H.U., Knollenberg, J., Kührt, E., Marchi, S., Mottola, S., Palmer, E., Schloerb, F.P., Sierks, H., Vincent, J.-B., A’Hearn, M.F., Barbieri, C., Rodrigo, R., Koschny, D., Rickman, H., Barucci, M.A., Bertaux, J.L., Bertini, I., Cremonese, G., Da Deppo, V., Davidsson, B., Debei, S., De Cecco, M., Fornasier, S., Fulle, M., Güttler, C., Ip, W.-H., Kramm, J.R., Küppers, M., Lara, L.M., Lazzarin, M., Lopez Moreno, J.J., Marzari, F., Naletto, G., Oklay, N., Thomas, N., Tubiana, C., Wenzel, K.-P.: The global shape, density and rotation of Comet 67P/Churyumov-Gerasimenko from preperihelion Rosetta/OSIRIS observations. Icarus 277, 257–278 (2016).  https://doi.org/10.1016/j.icarus.2016.05.002 ADSCrossRefGoogle Scholar
  51. Karkoschka, E.: Neptune’s rotational period suggested by the extraordinary stability of two features. Icarus 215, 439–448 (2011).  https://doi.org/10.1016/j.icarus.2011.05.013 ADSCrossRefGoogle Scholar
  52. Kirk, R.L., Oberst, J., Giese, B.: DS1 Digital elevation maps of comet 19P/Borrelly V1.0, DS1-C-MICAS-5-BORRELLY-DEM-V1.0. NASA Planetary Data System (2004)Google Scholar
  53. Knutson, H.A., Charbonneau, D., Allen, L.E., Fortney, J.J., Agol, E., Cowan, N.B., Showman, A.P., Cooper, C.S., Thomas, M.S.: A map of the day-night contrast of the extrasolar planet HD 189733b. Nature 447, 183–186 (2007).  https://doi.org/10.1038/nature05782 ADSCrossRefGoogle Scholar
  54. Konopliv, A.S., Asmar, S.W., Carranza, E., Sjogren, W.L., Yuan, D.-N.: Recent gravity models as a result of the Lunar Prospector mission. Icarus 150, 1–18 (2001)ADSCrossRefGoogle Scholar
  55. Konopliv, A.S., Yoder, C.F., Standish, E.M., Yuan, D.-N., Sjogren, W.L.: A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 182, 23–50 (2006)ADSCrossRefGoogle Scholar
  56. Konopliv, A.S., Asmar, S.W., Park, R.S., Bills, B.G., Centinello, F., Chamberlin, A.B., Ermakov, A., Gaskell, R.W., Rambaux, N., Raymond, C.A., Russell, C.T., Smith, D.E., Tricarico, P., Zuber, M.T.: The Vesta gravity field, spin pole and rotation period, landmark positions, and ephemeris from the Dawn tracking and optical data. Icarus 240, 103–117 (2014).  https://doi.org/10.1016/j.icarus.2013.09.005 ADSCrossRefGoogle Scholar
  57. Konopliv, A.S., Park, R.S., Folkner, W.M.: An improved JPL Mars Gravity Field and Orientation from Mars Orbiter and Lander Tracking Data. Icarus 274, 253–260 (2016).  https://doi.org/10.1016/j.icarus.2016.02.052 ADSCrossRefGoogle Scholar
  58. Kovalevsky, J., Seidelmann, P.K.: Fundamentals of Astrometry. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  59. Kuchynka, P., Folkner, W.M., Konopliv, A.S., Parker, T.J., Park, R.S., Le Maistre, S., Dehant, V.: New constraints on Mars rotation determined from radiometric tracking of the Opportunity Mars Exploration Rover. Icarus 229, 340–347 (2014).  https://doi.org/10.1016/j.icarus.2013.11.015 ADSCrossRefGoogle Scholar
  60. Kurth, W.S., Lecacheux, A., Averkamp, T.F., Groene, J.B., Gurnett, D.A.: A Saturnian longitude system based on a variable kilometric radiation period. GRL 24, L02201 (2007).  https://doi.org/10.1029/2006GL028336 ADSGoogle Scholar
  61. Li, J.-Y.: Body-fixed coordinate systems for asteroid (4) Vesta, planetary data system small bodies node, September 18 (2012). Originally at http://sbn.psi.edu/archive/dawn/fc/DWNVFC2_1A/DOCUMENT/VESTA_COORDINATES/VESTA_COORDINATES_120918.PDF, Now at https://web.archive.org/web/20130217143028/http://sbn.psi.edu/archive/dawn/fc/DWNVFC2_1A/DOCUMENT/VESTA_COORDINATES/VESTA_COORDINATES_120918.PDF. Accessed 1 Sept 2017
  62. Li, J.-Y., Mafi, J.N.: Body-fixed coordinate systems for asteroid (4) Vesta, planetary data system small bodies node, October 17 (2013) https://sbn.psi.edu/archive/dawn/fc/DWNVFC2_1A/DOCUMENT/VESTA_COORDINATES/VESTA_COORDINATES_131018.PDF. Accessed 1 Sept 2017
  63. Li, J.-Y., McFadden, L.A., Parker, J.W., Young, E.F., Stern, S.A., Thomas, P.C., Russell, C.T., Sykes, M.V.: Photometric analysis of 1 Ceres and surface mapping from HST observations. Icarus 182, 143–160 (2006).  https://doi.org/10.1016/j.icarus.2005.12.012 ADSCrossRefGoogle Scholar
  64. Li, J.-Y., Thomas, P.C., Carcich, B., Mutchler, M.J., McFadden, L.A., Russell, C.T., Weinstein-Weiss, S.S., Rayman, M.D., Raymond, C.A.: Improved measurement of asteroid (4) Vesta’s rotational axis orientation. Icarus 211, 528–534 (2011).  https://doi.org/10.1016/j.icarus.2010.09.019 ADSCrossRefGoogle Scholar
  65. LRO Project and LGCWG: A standardized lunar coordinate system for the lunar reconnaissance orbiter and lunar datasets, Version 5, October 1. (2008). https://lunar.gsfc.nasa.gov/library/LunCoordWhitePaper-10-08.pdf. Accessed 1 Sept 2017
  66. Ma, C., Arias, E.F., Eubanks, T.M., Fey, A.L., Gontier, A.-M., Jacobs, C.S., Sovers, O.J., Archinal, B.A., Charlot, P.: The International celestial reference frame as realized by very long baseline interferometry. Astron. J. 116, 516–546 (1998)ADSCrossRefGoogle Scholar
  67. Margot, J.-L.: A Mercury orientation model including non-zero obliquity and librations. Celest. Mech. Dyn. Astr. 105, 329–336 (2009).  https://doi.org/10.1007/s10569-009-9234-1 ADSCrossRefzbMATHGoogle Scholar
  68. Margot, J.-L., Peale, S.J., Solomon, S.C., Hauck, II, Steven, A., Ghigo, F.D., Jurgens, R.F., Yseboodt, M., Giorgini, J.D., Padovan, S., Campbell, D.B.: Mercury’s moment of inertia from spin and gravity data. J. Geophys. Res. 117, E00L09 (2012).  https://doi.org/10.1029/2012JE004161
  69. Mazarico, E., Genova, A., Goossens, S., Lemoine, F.G., Neumann, G.A., Zuber, M.T., Smith, D.E., Solomon, S.C.: The gravity field, orientation, and ephemeris of Mercury from MESSENGER observations after three years in orbit. J. Geophys. Res. Planets 119, 2417–2436 (2014)ADSCrossRefGoogle Scholar
  70. Meech, K., Valsecchi, G.B., Archinal, B., Schulz, R., Consolmagno, G.: Supporting editors, authors, and missions with IAU recommendations, Inquires of Heaven, No. 10, 4, August 31 (2012). Originally at http://www.astronomy2012.org/ih. Not Reachable 1 Sept 2017
  71. Merline, W.J., Drummond, J.D., Carry, B., Conrad, A., Tamblyn, P.M., Dumas, C., Kaasalainen, M., Erikson, A., Mottola, S., Durech, R.G., Behrend, R., Casalnuovo, G.B., Chinaglia, B., Christou, J.C., Chapman, C.R., Neyman, C.: The resolved asteroid program—size, shape, and pole of (52) Europa. Icarus 225, 794–805 (2013)ADSCrossRefGoogle Scholar
  72. Miller, J.K., Konopliv, A.S., Antreasian, P.G., Bordi, J.J., Chesley, S., Helfrich, C.E., Owen, W.M., Wang, T.C., Williams, B.G., Yeomans, D.K., Scheeres, D.J.: Determination of shape, gravity, and rotational state of asteroid 433 eros. Icarus 155, 3–17 (2002)ADSCrossRefGoogle Scholar
  73. Mueller, B.E.A., Samarasinha, N.H., Rauer, H., Helbert, J.: Determination of a precise rotation period for the Deep Space 1 target, Comet 19P/Borrelly. Icarus 209, 745–752 (2010)ADSCrossRefGoogle Scholar
  74. NAIF: An overview of reference frames and coordinate systems in the SPICE context, navigation and ancillary information facility, Jet Propulsion Laboratory, California Institute of Technology, Pasadena. November (2014). https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/17_frames_and_coordinate_systems.pdf. Accessed 1 Sept 2017
  75. NAIF: PCK required reading, navigation and ancillary information facility, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA. January 22 (2013). https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/pck.html. Accessed 1 Sept 2017. https://naif.jpl.nasa.gov/pub/naif/generic_kernels/pck/. Accessed 1 Sept 2017
  76. Nimmo, F., Umurhan, O., Lisse, C.M., Bierson, C.J., Lauer, T.R., Buie, M.W., Throop, H.B., Kammer, J.A., Roberts, J.H., McKinnon, W.B., Zangari, A.M., Moore, J.M., Stern, S., Alan, Y., Leslie, A., Weaver, H.A., Olkin, C.B., Ennico, K.: Mean radius and shape of Pluto and Charon from New Horizons images. Icarus 287, 12–29 (2017).  https://doi.org/10.1016/j.icarus.2016.06.027 ADSCrossRefGoogle Scholar
  77. Ostro, S.J., Hudson, R.S., Nolan, M.C., Margot, J.-L., Scheeres, D.J., Campbell, D.B., Magri, C., Giosini, J.D., Yeomans, D.K.: Radar Observations of asteroid 216 Kleopatra. Science 288, 836–83 (2000)ADSCrossRefGoogle Scholar
  78. Parker, T.J. Golombek, M.P., Calef, F.J. Hare, T.M.: High-resolution basemaps for localization, mission planning, and geologic mapping at Meridian Planum and Gale crater, LPS XLIII, Abstract #2535 (2012)Google Scholar
  79. PDS: Planetary Data System Standards Reference, Jet Propulsion Laboratory, California Institute of Technology, Pasadena. Version 3.8, February 27 (2009). https://pds.nasa.gov/documents/sr/StdRef_20090227_v3.8.pdf. Accessed 1 Sept 2017
  80. PDS SBN: Coordinate systems at PDS-SBN, April 10 (2014). https://pdssbn.astro.umd.edu/data_sb/resources/coordinate_systems.shtml. Accessed 1 Sept 2017
  81. Perry, M.E., Neumann, G.A., Phillips, R.J., Barnouin, O.S., Ernst, C.M., Kahan, D.S., Solomon, S.C., Zuber, M.T., Smith, D.E., Hauck, II, Steven, A., Peale, S.J., Margot, J.-L., Mazarico, E., Johnson, C.L., Gaskell, R.W., Roberts, J.H., McNutt Jr., R.L.: The low-degree shape of Mercury. Oberst. J. Geophys. Res. Lett. 42, 6951–6958 (2015).  https://doi.org/10.1002/2015GL065101
  82. Preusker, F., Scholten, F., Matz, K.-D., Roatsch, T., Willner, K., Hviid, S.F., Knollenberg, J., Jorda, L., Gutiérrez, P.J., Kührt, E., Mottola, S., A’Hearn, M.F., Thomas, N., Sierks, H., Barbieri, C., Lamy, P., Rodrigo, R., Koschny, D., Rickman, H., Keller, H.U., Agarwal, J., Barucci, M.A., Bertaux, J.-L., Bertini, I., Cremonese, G., Da Deppo, V., Davidsson, B., Debei, S., De Cecco, M., Fornasier, S., Fulle, M., Groussin, O., Güttler, C., Ip, W.-H., Kramm, J.R., Küppers, M., Lara, L.M., Lazzarin, M., Lopez Moreno, J.J., Marzari, F., Michalik, H., Naletto, G., Oklay, N., Tubiana, C., Vincent, J.-B.: Shape model, reference system definition, and cartographic mapping standards for comet 67P/Churyumov-Gerasimenko–Stereo-photogrammetric analysis of Rosetta/OSIRIS image data. A&A 583, A33 (2015)ADSCrossRefGoogle Scholar
  83. Preusker, F., Scholten, F., Matz, K.-D., Elgner, S., Jaumann, R., Roatsch, T., Joy, S.P., Polanskey, C.A., Raymond, C.A., Russell, C.T.: Dawn at ceres—shape model and rotational state, LPS XLVII, Abstract #1954 (2016)Google Scholar
  84. Radebaugh, J., Thomson, B.J., Archinal, B., Hagerty, J., Gaddis, L., Lawrence, S.J., Sutton, S., the MAPSIT Steering Committee: Obtaining and Using Planetary Spatial Data into the Future: The Role of the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), Planetary Science Vision 2050 Workshop, Abstract #8084 (2017)Google Scholar
  85. Rayman, M.D., Fraschetti, T.C., Raymond, C.A., Russell, C.T.: Dawn: a mission in development for exploration of main belt asteroids Vesta and Ceres. Acta Astronaut. 58, 605–616 (2006)ADSCrossRefGoogle Scholar
  86. Raymond, C., Roatsch, T.: Ceres coordinate system description, as of October 14 (2015). https://sbn.psi.edu/pds/resource/ceres_coord_sys_151014.pdf. Accessed 1 Sept 2017
  87. Riddle, A.C., Warwick, J.W.: Redefinition of system III longitude. Icarus 27, 457–459 (1976)ADSCrossRefGoogle Scholar
  88. Roncoli, R.: Lunar Constants and Models Document. JPL D-32296 (2005). https://ssd.jpl.nasa.gov/?lunar_doc. Accessed 1 Sept 2017
  89. Russell, C.T., Dougherty, M.K.: Magnetic fields of the outer planets. SSR (2010).  https://doi.org/10.1007/s11214-009-9621-7 Google Scholar
  90. Samarasinha, N.H., Mueller, B.E.A., Belton, M.J.S., Jorda, L.: Rotation of Cometary Nuclei in Comets II. In: Festou, M., Keller, H.U., Weaver, H.A., (eds.) University of Arizona Press, Tucson (2004)Google Scholar
  91. Schleicher, D.G., Woodney, L.M., Millis, R.L.: Comet 19P/Borrelly at multiple apparitions: seasonal variations in gas production and dust morphology. Icarus 162, 415–442 (2003)ADSCrossRefGoogle Scholar
  92. Scholten, F., Preusker, F., Jorda, L, and Hviid, S.: Reference Frames and Mapping Schemes of Comet 67P/C-G, v2 (24 September 2015), RO-C-MULTI-5-67P-SHAPE-V1.0:CHEOPS_REF_FRAME_V1, NASA Planetary Data System and ESA Planetary Science Archive (2015). https://pdssbn.astro.umd.edu/holdings/ro-c-multi-5-67p-shape-v1.0/document/cheops_ref_frame_v1.pdf. Accessed 26 Nov 2017
  93. Seidelmann, P.K., Abalakin, V.K., Bursa, M., Davies, M.E., de Bergh, C., Lieske, J.H., Oberst, J., Simon, J.L., Standish, E.M., Stooke, P., Thomas, P.C.: Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 2000. Celest. Mech. Dyn. Astron. 82, 83–110 (2002)ADSCrossRefGoogle Scholar
  94. Seidelmann, P.K., Archinal, B.A., A’Hearn, M.F., Cruiskshank, D.P., Hilton, J.L., Keller, H.U., Oberst, J., Simon, J.L., Stooke, P., Tholen, D.J., Thomas, P.C.: Report on the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements: 2003. Celest. Mech. Dyn. Astron. 91, 203–215 (2005)ADSCrossRefzbMATHGoogle Scholar
  95. Seidelmann, P.K., Archinal, B.A., A’Hearn, M.F., Conrad, A., Consolmagno, G.J., Hestroffer, D., Hilton, J.L., Krasinsky, G.A., Neumann, G., Oberst, J., Stooke, P., Tedesco, E., Tholen, D.J., Thomas, P.C., Williams, I.P.: Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements: 2006. Celest. Mech. Dyn. Astron. 98, 155–180 (2007)ADSCrossRefzbMATHGoogle Scholar
  96. Shepard, M.K., James, R., Patrick, A., Taylor, L.A., Rodriguez-Ford, A.C., Males, J.R., Morzinski, K.M., Close, L.M., Kaasalainen, M., Viikinkoski, M., Timerson, B., Reddy, V., Magri, C., Nolan, M.C., Howell, E.S., Benner, L.A.M., Giorgini, J.D., Warner, B.D., Harris, A.W.: Radar observations and shape model of asteroid 16 Psyche. Icarus 281, 388–403 (2017)ADSCrossRefGoogle Scholar
  97. Smith, D., Neumann, B., Arvidson, R.E. Guinness, E.A., Slavney, S.: Mars global surveyor laser altimeter mission experiment gridded data record. NASA Planetary Data System, MGS-M-MOLA-5-MEGDR-L3-V1.0, (2003). https://pds.nasa.gov/ds-view/pds/viewProfile.jsp?dsid=MGS-M-MOLA-5-MEGDR-L3-V1.0. Accessed 1 Sept 2017
  98. Soderblom, L.A., Boice, D.C., Britt, D.T., Brown, R.H., Buratti, B.J., Kirk, R.L., Lee, M., Nelson, R.M., Oberst, J., Sandel, B.R., Stern, S.A., Thomas, N., Yelle, R.V.: Imaging borrelly. Icarus 167, 4–15 (2004)ADSCrossRefGoogle Scholar
  99. Stark, A.: The prime meridian of the planet Mercury. MESSENGER PDS Release (2016). https://naif.jpl.nasa.gov/pub/naif/pds/data/mess-e_v_h-spice-6-v1.0/messsp_1000/document/stark_prime_meridian.pdf. Accessed 1 Sept 2017
  100. Stark, A., Oberst, J., Preusker, F., Peale, S.J., Margot, J.-L., Phillips, R.J., Neumann, G.A., Smith, D.E., Zuber, M.T., Solomon, S.C.: First MESSENGER orbital observations of Mercury’s librations. Geophys. Res. Lett. 42, 7881–7889 (2015)ADSCrossRefGoogle Scholar
  101. Stark, A., Willner, K., Burmeister, S., Oberst, J.: Geodetic framework for martian satellite exploration I: reference rotation models. European Planetary Science Conference, V. 11, EPSC2017-868-1 (2017a). http://meetingorganizer.copernicus.org/EPSC2017/EPSC2017-868-1.pdf. Accessed 17 July 2017
  102. Stark, A., Oberst, J., Preusker, F., Burmeister, S., Steinbrügge, G., Hussmann, H.: The geodetic reference frames of Mercury after MESSENGER. J. Geodesy (2017b, submitted). Preprint available at http://arxiv.org/abs/1710.09686
  103. Stevenson, D.J.: A new spin on Saturn. Nature 441, 344–35 (2006)CrossRefGoogle Scholar
  104. Thomas, P., Veverka, J.: Neptune’s small inner satellites. JGR 96(Supplement), 19261–19268 (1991)Google Scholar
  105. Thomas, P.C., Binzel, R.P., Gaffey, M.J., Zellner, B.H., Storrs, A.D., Wells, E.: Vesta: spin pole, size, and shape from HST images. Icarus 128, 88–94 (1997).  https://doi.org/10.1006/icar.1997.5736 ADSCrossRefGoogle Scholar
  106. Thomas, P.C., Joseph, J., Carcich, B., Veverka, J., Clark, B.E., Bell, J.F., Byrd, A.W., Chomko, R., Robinson, M., Murchie, S., Prockter, L., Cheng, A., Izenberg, N., Malin, M., Chapman, C., McFadden, L.A., Kirk, R., Gaffey, M., Lucey, P.G.: Eros: shape, topography, and slope processes. Icarus 155, 18–37 (2002)ADSCrossRefGoogle Scholar
  107. Thomas, P.C., Parker, J.W., McFadden, L.A., Russell, C.T., Stern, S.A., Sykes, M.V., Young, E.F.: Differentiation of the asteroid Ceres as revealed by its shape. Nature 437, 224–226 (2005)ADSCrossRefGoogle Scholar
  108. Thomas, P.C., Veverka, J., Belton, M.J.S., Hidy, A., A’Hearn, M.F., Farnham, T.L., Groussin, O., Li, J.-Y., McFadden, L.A., Sunshine, J., Wellnitz, D., Lisse, C., Schultz, P., Meech, K.J., Delamere, W.A.: The shape, topography, and geology of Tempel 1 from Deep Impact observations. Icarus 187, 4–15 (2007)ADSCrossRefGoogle Scholar
  109. Thomas, P.C., A’Hearn, M.F., Veverka, J., Belton, M.J.S., Kissel, J., Klaasen, K.P., McFadden, L.A., Melosh, H.J., Schultz, P.H., Besse, S., Carcich, B.T., Farnham, T.L., Groussin, O., Hermalyn, B., Li, J.-Y., Lindler, D.J., Lisse, C.M., Meech, K., Richardson, J.E.: Shape, density, and geology of the nucleus of comet 103P/Hartley 2. Icarus 222, 550–558 (2013a)ADSCrossRefGoogle Scholar
  110. Thomas, P.C., Burns, J.A., Hedman, M., Helfenstein, P., Morrison, S., Tiscareno, M.S., Veverka, J.: The inner small satellites of Saturn: A variety of worlds. Icarus 226, 999–1019 (2013b)ADSCrossRefGoogle Scholar
  111. Thomas, P.C., Tajeddine, R., Tiscareno, M.S., Burns, J.A., Joseph, J., Loredo, T.J., Helfenstein, P., Porco, C.: Enceladus’s measured physical libration requires a global subsurface ocean. Icarus 264, 37 (2016).  https://doi.org/10.1016/j.icarus.2015.08.037 ADSCrossRefGoogle Scholar
  112. Urban, S.E., Seidelmann, P.K. (eds.): Explanatory Supplement to the Astronomical Almanac, 3rd edn. University Science Books, Mill Valley (2012)Google Scholar
  113. Verma, A.K., Margot, J.L.: Mercury’s gravity, tides, and spin from MESSENGER radio science data. J. Geophys. Res. Planets 121, 1627–1640 (2016)ADSCrossRefGoogle Scholar
  114. Veverka, J., Klaasen, K., A’Hearn, M., Belton, M., Brownlee, D., Chesley, S., Clark, B., Economou, T., Farquhar, R., Green, S.F., Groussin, O., Harris, A., Kissel, J., Li, J.-Y., Meech, K., Melosh, J., Richardson, J., Schultz, P., Silen, J., Sunshine, J., Thomas, P., Bhaskaran, S., Bodewits, D., Carcich, B., Cheuvront, A., Farnham, T., Sackett, S., Wellnitz, D., Wolf, A.: Return to comet Tempel 1: overview of stardust-NExT results. Icarus 222, 424–435 (2013).  https://doi.org/10.1016/j.icarus.2012.03.034 ADSCrossRefGoogle Scholar
  115. Williams, J.G., Boggs, D.H., Folkner, W.M.: DE421 lunar orbit, physical librations, and surface coordinates. JPL Interoffice Memorandum IOM 335-JW,DB,WF-20080314-001, 14 March (2008). https://ssd.jpl.nasa.gov/pub/eph/planets/ioms/de421_moon_coord_iom.pdf. Accessed 1 Sept 2017
  116. Zangari, A.: A meta-analysis of coordinate systems and bibliography of their use on Pluto from Charon’s discovery to the present day. Icarus 246, 93–145 (2015).  https://doi.org/10.1016/j.icarus.2014.10.040 ADSCrossRefGoogle Scholar
  117. Zebker, H.A., Stiles, B., Hensley, S., Lorenz, R., Kirk, R.L., Lunine, J.: Size and shape of Saturn’s moon titan. Science 324, 921–923 (2009)ADSCrossRefGoogle Scholar
  118. Zubarev, A., Nadezhdina, I., Oberst, J., Hussmann, H., Stark, A.: New Ganymede control point network and global shape model. PSS 117, 246 (2015).  https://doi.org/10.1016/j.pss.2015.06.022 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature (outside the USA) 2018

Authors and Affiliations

  • B. A. Archinal
    • 1
  • C. H. Acton
    • 2
  • M. F. A’Hearn
    • 3
  • A. Conrad
    • 4
  • G. J. Consolmagno
    • 5
  • T. Duxbury
    • 6
  • D. Hestroffer
    • 7
  • J. L. Hilton
    • 8
  • R. L. Kirk
    • 9
  • S. A. Klioner
    • 10
  • D. McCarthy
    • 11
  • K. Meech
    • 12
  • J. Oberst
    • 13
  • J. Ping
    • 14
  • P. K. Seidelmann
    • 15
  • D. J. Tholen
    • 16
  • P. C. Thomas
    • 17
  • I. P. Williams
    • 18
  1. 1.U.S. Geological SurveyFlagstaffUSA
  2. 2.Jet Propulsion LaboratoryPasadenaUSA
  3. 3.University of MarylandCollege ParkUSA
  4. 4.Large Binocular Telescope ObservatoryUniversity of ArizonaTucsonUSA
  5. 5.Vatican ObservatoryVatican CityHoly See (Vatican City State)
  6. 6.George Mason UniversityFairfaxUSA
  7. 7.IMCCE, Observatoire de Paris, PSL Research university, CNRS, Sorbonne Universités, UPMC, Univ. LilleParisFrance
  8. 8.U.S. Naval ObservatoryWashingtonUSA
  9. 9.U.S. Geological Survey (Emeritus)FlagstaffUSA
  10. 10.Lohrmann Observatory, Technische Universtät DresdenDresdenGermany
  11. 11.U.S. Naval Observatory (Retired)WashingtonUSA
  12. 12.Institute for AstronomyHonoluluUSA
  13. 13.DLR Berlin AdlershofBerlinGermany
  14. 14.National Astronomical Observatories of CASBeijingChina
  15. 15.University of VirginiaCharlottesvilleUSA
  16. 16.University of HawaiiHonoluluUSA
  17. 17.Cornell UniversityIthacaUSA
  18. 18.Queen Mary, University of LondonLondonUK

Personalised recommendations