Celestial Mechanics and Dynamical Astronomy

, Volume 109, Issue 2, pp 101–135 | Cite as

Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009

  • B. A. Archinal
  • M. F. A’Hearn
  • E. Bowell
  • A. Conrad
  • G. J. Consolmagno
  • R. Courtin
  • T. Fukushima
  • D. Hestroffer
  • J. L. Hilton
  • G. A. Krasinsky
  • G. Neumann
  • J. Oberst
  • P. K. Seidelmann
  • P. Stooke
  • D. J. Tholen
  • P. C. Thomas
  • I. P. Williams
Special Report

Abstract

Every three years the IAU Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the poles of rotation and the prime meridians of the planets, satellites, minor planets, and comets. This report takes into account the IAU Working Group for Planetary System Nomenclature (WGPSN) and the IAU Committee on Small Body Nomenclature (CSBN) definition of dwarf planets, introduces improved values for the pole and rotation rate of Mercury, returns the rotation rate of Jupiter to a previous value, introduces improved values for the rotation of five satellites of Saturn, and adds the equatorial radius of the Sun for comparison. It also adds or updates size and shape information for the Earth, Mars’ satellites Deimos and Phobos, the four Galilean satellites of Jupiter, and 22 satellites of Saturn. Pole, rotation, and size information has been added for the asteroids (21) Lutetia, (511) Davida, and (2867) Šteins. Pole and rotation information has been added for (2) Pallas and (21) Lutetia. Pole and rotation and mean radius information has been added for (1) Ceres. Pole information has been updated for (4) Vesta. The high precision realization for the pole and rotation rate of the Moon is updated. Alternative orientation models for Mars, Jupiter, and Saturn are noted. The Working Group also reaffirms that once an observable feature at a defined longitude is chosen, a longitude definition origin should not change except under unusual circumstances. It is also noted that alternative coordinate systems may exist for various (e.g. dynamical) purposes, but specific cartographic coordinate system information continues to be recommended for each body. The Working Group elaborates on its purpose, and also announces its plans to occasionally provide limited updates to its recommendations via its website, in order to address community needs for some updates more often than every 3 years. Brief recommendations are also made to the general planetary community regarding the need for controlled products, and improved or consensus rotation models for Mars, Jupiter, and Saturn.

Keywords

Cartographic coordinates Longitude Latitude Rotation axes Rotation periods Sizes Shapes Planets Satellites Dwarf planets Minor planets Comets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson J.D., Schubert G.: Saturn’s gravitational field, internal rotation, and interior structure. Science 317, 1384–1387 (2007). doi:10.1126/science.1144835 ADSCrossRefGoogle Scholar
  2. Anderson J.D., Jacobson R.A., Lau E.L., Moore W.B., Olsen O., Schubert G., Thomas P.C.: Galileo Gravity Science Team: Shape, Mean Radius, Gravity Field and Interior Structure of Ganymede. DPS Meeting #33. Bull. Am. Astron. Soc. 33, 1101 (2001)ADSGoogle Scholar
  3. Anderson J.D., Jacobson R.A., McElrath T.P., Moore W.B., Schubert G., Thomas P.C.: Shape, mean radius, gravity field, and interior structure of callisto. Icarus 153, 157–161 (2001)ADSCrossRefGoogle Scholar
  4. Carry B., Dumas C., Fulchignoni M., Merline W.J., Berthier J., Hestroffer D., Fusco T., Tamblyn P.: Near-infrared mapping and physical properties of the dwarf-planet Ceres. Astron. Astroph. 478, 235–244 (2008). doi:10.1051/0004-6361:20078166 ADSCrossRefGoogle Scholar
  5. Carry B., Dumas C., Kaasalainen M., Berthier J., Merline W.J., Erard S., Conrad A., Drummond J.D., Hestroffer D., Fulchignoni M., Fusco T.: Physical properties of (2) Pallas. Icarus 205, 460–472 (2010). doi:10.1016/j.icarus.2009.08.007 ADSCrossRefGoogle Scholar
  6. Carry, B., Kaasalainen, M., Leyrat, C., Merline, W.J., Drummond, J.D., Conrad, A., Weaver, H.A., Tamblyn, P.M., Chapman, C.R., Dumas, C., Colas, F., Christou, J.C., Dotto, E., Perna, D., Fornasier, S., Bernasconi, L., Behrend, R., Vachier, F., Kryszczynska, A., Polinska, M., Fulchignoni, M., Roy, R., Naves, R., Poncy, R., Wiggins, P.: Physical properties of ESA Rosetta target asteroid (21) Lutetia: shape and flyby geometry. Astron. & Astroph. (2010, in press). doi:10.1051/0004-6361/201015074
  7. Cassini Project: Planetary Constants (PcK) SPICE kernel. May 7 (2009), ftp://naif.jpl.nasa.gov/pub/naif/CASSINI/kernels/pck/cpck07May2009.tpc. Accessed 2010 October 18
  8. Chamberlain M.A., Sykes M.V., Esquerdo G.A.: Ceres lightcurve analysis—period determination. Icarus 188, 451–456 (2007)ADSCrossRefGoogle Scholar
  9. Conrad A.R., Dumas C., Merline W.J., Drummond J.D., Campbell R.D., Goodrich R.W., Le Mignant D., Chaffee F.H., Fusco T., Kwok S.H., Knight R.I.: Direct measurement of 511 the size, shape, and pole of Davida with Keck AO in a single night. Icarus 191, 616–627 (2007). doi:10.1016/j.icarus.2007.05.004 ADSCrossRefGoogle Scholar
  10. Davies M.E., Abalakin V.K., Cross C.A., Duncombe R.L., Masursky H., Morando B., Owen T.C., Seidelmann P.K., Sinclair A.T., Wilkins G.A., Tjuflin Y.S.: Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites. Celest. Mech. 22, 205–230 (1980)MathSciNetADSCrossRefGoogle Scholar
  11. Davies M.E., Abalakin V.K., Lieske J.H., Seidelmann P.K., Sinclair A.T., Sinzi A.M., Smith B.A., Tjuflin Y.S.: Report of the IAU working group on cartographic coordinates and rotational elements of the planets and satellites: 1982. Celest. Mech. 29, 309–321 (1983)ADSCrossRefGoogle Scholar
  12. Davies M.E., Abalakin V.K., Bursa M., Lederle T., Lieske J.H., Rapp R.H., Seidelmann P.K., Sinclair A.T., Teifel V.G., Tjuflin Y.S.: Report of the IAU/IAG COSPAR working group on cartographic coordinates and rotational elements of the planets and satellites: 1985. Celest. Mech. 39, 103–113 (1986)ADSCrossRefGoogle Scholar
  13. Davies M.E., Abalakin V.K., Bursa M., Hunt G.E., Lieske J.H., Morando B., Rapp R.H., Seidelmann P.K., Sinclair A.T., Tjuflin Y.S.: Report of the IAU/IAG/COSPAR working group on cartographic coordinates and rotational elements of the planets and satellites: 1988. Celest. Mech. Dyn. Astron. 46, 187–204 (1989)ADSCrossRefGoogle Scholar
  14. Davies M.E., Abalakin V.K., Brahic A., Bursa M., Chovitz B.H., Lieske J.H., Seidelmann P.K., Sinclair A.T., Tjuflin Y.S.: Report of the IAU/IAG/COSPAR working group on cartographic coordinates and rotational elements of the planets and satellites: 1991. Celest. Mech. Dyn. Astron. 53, 377–397 (1992)ADSCrossRefGoogle Scholar
  15. Davies M.E., Abalakin V.K., Bursa M., Lieske J.H., Morando B., Seidelmann P.K., Sinclair A.T., Yallop B., Tjuflin Y.S.: Report of the IAU/IAG/COSPAR working group on cartographic coordinates and rotational elements of the planets and satellites: 1994. Celest. Mech. Dyn. Astron. 63, 127–148 (1996)ADSGoogle Scholar
  16. Davies M.E., Colvin T.R., Oberst J., Zeitler W., Schuster P., Neukum G., McEwen A.S., Phillips C.B., Thomas P.C., Veverka J., Belton M.J.S., Schubert G.: The control networks of the Galilean satellites and implications for global shape. Icarus 135, 372–376 (1998). doi:10.1006/icar.1998.5982 ADSCrossRefGoogle Scholar
  17. Davies M.E., Colvin T.R.: Lunar coordinates in the regions of the Apollo landers. JGR 105(E8), 20,277–20,280 (2000)ADSCrossRefGoogle Scholar
  18. de Vaucouleurs G., Davies M.E., Sturms F.M Jr.: Mariner 9 areographic coordinate system. JGR 78, 4395–4404 (1973)ADSCrossRefGoogle Scholar
  19. Drummond, J.D., Conrad, A., Merline, W.J., Carry, B., Chapman, C.R., Weaver, H.A., Tamblyn, P.M., Christou, J.C., Dumas, C.: The triaxial ellipsoid dimensions, rotational pole, and bulk density of ESA Rosetta target asteroid (21) Lutetia. Astron. & Astroph. (2010, in press). doi:10.1051/0004-6361/201015075
  20. Duxbury, T.: Minutes of 2006 October 3 Meeting of the MGCWG, as of 2006 October 31 (2006)Google Scholar
  21. Folkner, W.M., Williams, J.G., Boggs, D.H.: The Planetary and Lunar Ephemeris DE 421. JPL Memorandum IOM 343R-08-003, 31 March (2008). Available as ftp://ssd.jpl.nasa.gov/pub/eph/planets/ioms/de421.iom.v1.pdf. Accessed 2010 October 18
  22. Folkner, W.M., Williams, J.G., Boggs, D.H.: The Planetary and Lunar Ephemeris DE 421. IPN Progress Report 42-178, August 15 (2009). Available as http://ipnpr.jpl.nasa.gov/progress_report/42-178/178C.pdf. Accessed 2010 October 18
  23. Giampieri G., Dougherty M.K., Smith E.J., Russell C.T.: A regular period for Saturn’s magnetic field that may track its internal rotation. Nature 441, 62–64 (2006)ADSCrossRefGoogle Scholar
  24. Groten, E.: Report of Special Commission 3 of IAG. In: Johnston, K. J, et al. (eds.) Toward Models and Constants for Sub-Microarcsecond Astrometry, U.S. Naval Observatory, Washington, D.C., pp. 337–352 (2000). Available as http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA435898. Accessed 2010 October 18
  25. Gurnett, D.A., Persoon, A.M., Kurth, W.S., Groene, J.B., Averkamp, T.F., Dougherty, M.K., Southwood, D.J.: The variable rotation period of the inner region of Saturn’s plasma disk. Science 316, 442–445 1–16, April 20 (2007)Google Scholar
  26. Higgins C.A., Carr T.D., Reyes F., Greenman W.B., Lebo G.R.: A redefinition of Jupiter’s rotation period. JGR 102(A10), 22,033–22,041 (1997)ADSCrossRefGoogle Scholar
  27. International Astronomical Union (IAU): Proceedings of the Sixteenth General Assembly. Transactions of the IAU, XVI B, D. Reidel Publishing Company, Dordrecht (1977). A copy of the 1976 IAU Resolutions including the “IAU (1976) System of Astronomical Constants” is available on-line as http://www.iau.org/static/resolutions/IAU1976_French.pdf. Accessed 2010 October 18
  28. International Astronomical Union (IAU) Working Group for Planetary System Nomenclature (WGPSN) and International Astronomical Union Committee on Small Body Nomenclature: Dwarf Planets and their Systems (2010), http://planetarynames.wr.usgs.gov/append7.html#DwarfPlanets. Accessed 2010 October 18
  29. Jorda, L., Lamy, P., Groussin, O., Besse, S., Faury, G., Gaskell, R., Gesquière, G., Kaasalainen, M.: Asteroid (2867) Steins: shape, topography and geology from OSIRIS observations, to be submitted to Icarus (2010)Google Scholar
  30. Keller H.U., Barbieri C., Koschny D., Lamy P., Rickman H., Rodrigo R., Sierks H., A’Hearn M.F., Angrilli F., Barucci M.A., Bertaux J.-L., Cremonese G., Da Deppo V., Davidsson B., De Cecco M., Debei S., Fornasier S., Fulle M., Groussin O., Gutierrez P.J., Hviid S.F., Ip W.-H., Jorda L., Knollenberg J., Kramm J.R., Kührt E., Küppers M., Lara L.-M., Lazzarin M., Moreno J.L., Marzari F., Michalik H., Naletto G., Sabau L., Thomas N., Wenzel K.-P., Bertini I., Besse S., Ferri F., Kaasalainen M., Lowry S., Marchi S., Mottola S., Sabolo W., Schröder S.E., Spjuth S., Vernazza P.: E-Type Asteroid (2867) Steins as Imaged by OSIRIS on Board Rosetta. Science 327, 190–193 (2010). doi:10.1126/science.1179559 ADSCrossRefGoogle Scholar
  31. Konopliv A.S., Asmar S.W., Carranza E., Sjogren W.L., Yuan D.-N.: Recent gravity models as a result of the Lunar Prospector mission. Icarus 150, 1–18 (2001)ADSCrossRefGoogle Scholar
  32. Konopliv A.S., Yoder C.F., Standish E.M., Yuan D.-N., Sjogren W.L.: A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 182, 23–50 (2006)ADSCrossRefGoogle Scholar
  33. Kovalevsky J., Seidelmann P.K.: Fundamentals of Astrometry. Cambridge University Press, Cambridge (2004)MATHCrossRefGoogle Scholar
  34. Kurth W.S., Lecacheux A., Averkamp T.F., Groene J.B., Gurnett D.A.: A Saturnian longitude system based on a variable kilometric radiation period. GRL 24, L02201 (2007). doi:10.1029/2006GL028336 CrossRefGoogle Scholar
  35. Li J.-Y., McFadden L.A., Parker J.W., Young E.F., Stern S.A., Thomas P.C., Russell C.T., Sykes M.V.: Photometric analysis of 1 Ceres and surface mapping from HST observations. Icarus 182, 143–160 (2006a). doi:10.1016/j.icarus.2005.12.012 ADSCrossRefGoogle Scholar
  36. Li, J.-Y., Young, E.F., Thomas, P.C., Parker, J.Wm., McFadden, L.A., Russell, C.T., Stern, S.A., Sykes, M.V.: HST Images, Albedo Maps, and Shape of 1 Ceres V1.0. EAR-A-HSTACS-5-CERESHST-V1.0. NASA Planetary Data System (2006b). Available at http://sbn.psi.edu/pds/resource/cereshst.html. Accessed 2010 October 18
  37. Li, J.-Y., Thomas, P.C., Carcich, B., Mutchler, M.J., McFadden, L.A., Russell, C.T., Weinstein-Weiss, S.S., Rayman, M.D., Raymond, C.A.: Improved Measurement of Asteroid (4) Vesta’s Rotational Axis Orientation. Icarus. (2010, in press). doi:10.1016/j.icarus.2010.09.019
  38. Lorenz R.D., Stiles B.W., Kirk R.L., Allison M.D., Persidel Marmo P., Iess L., Lunine J.I., Ostro S.J., Hensley S.: Titan’s rotation reveals an internal Ocean and changing zonal winds. Science 319, 1649–1651 (2008). doi:10.1126/science.1151639 ADSCrossRefGoogle Scholar
  39. LRO Project and LGCWG (2008). A Standardized Lunar Coordinate System for the Lunar Reconnaissance Orbiter and Lunar Datasets, Version 5, October 1. Available at http://lunar.gsfc.nasa.gov/library/LunCoordWhitePaper-10-08.pdf. Accessed 2010 October 18
  40. Ma C., Arias E.F., Eubanks T.M., Fey A.L., Gontier A.-M., Jacobs C.S., Sovers O.J., Archinal B.A., Charlot P.: The international celestial reference frame as realized by very long baseline interferometry. Astron. J. 116, 516–546 (1998)ADSCrossRefGoogle Scholar
  41. Margot J.-L.: A Mercury orientation model including non-zero obliquity and librations. Celest. Mech. Dyn. Astron. 105, 329–336 (2009). doi:10.1007/s10569-009-9234-1 ADSCrossRefMATHGoogle Scholar
  42. McCarthy, D.D., Petit, G.: IERS Conventions (2003), IERS Technical Note no. 32, IERS Conventions Centre, U.S. Naval Observatory and Bureau International des Poids et Mesures (2004). Available on-line from http://www.iers.org/IERS/EN/DataProducts/Conventions/conventions.html?__nnn=true. Accessed 2010 October 18
  43. Miller J.K., Konopliv A.S., Antreasian P.G., Bordi J.J., Chesley S., Helfrich C.E., Owen W.M., Wang T.C., Williams B.G., Yeomans D.K., Scheeres D.J.: Determination of shape, gravity, and rotational state of asteroid 433 Eros. Icarus 155, 3–17 (2002)ADSCrossRefGoogle Scholar
  44. Moritz, H.: Geodetic Reference System 1980. In: Tscherning, C.C. (ed.) The Geodesist’s Handbook 1984, Bulletin Géodésique, 58(3), pp. 388–398 (1980)Google Scholar
  45. Nimmo F., Thomas P.C., Pappalardo R.T., Moore W.B.: The global shape of Europa: constraints on lateral shell thickness variations. Icarus 191, 183–192 (2007)ADSCrossRefGoogle Scholar
  46. Ostro S.J., Hudson R.S., Nolan M.C., Margot J.-L., Scheeres D.J., Campbell D.B., Magri C., Giosini J.D., Yeomans D.K.: Radar observations of asteroid 216 kleopatra. Science 288, 836–839 (2000)ADSCrossRefGoogle Scholar
  47. Porco C.C., Thomas P.C., Weiss J.W., Richardson D.C.: Saturn’s small inner satellites: clues to their origins. Science 318, 1602–1607 (2007). doi:10.1126/science.1143977 ADSCrossRefGoogle Scholar
  48. Riddle A.C., Warwick J.W.: Redefinition of system III longitude. Icarus 27, 457–459 (1976)ADSCrossRefGoogle Scholar
  49. Roatsch T., Wählisch M., Giese B., Hoffmeister A., Matz K.-D., Scholten F., Kuhn A., Wagner R., Neukum G., Helfenstein P., Porco C.C.: High-resolution Enceladus atlas derived from Cassini-ISS images. Planet. Space Sci. 56, 109–116 (2008)ADSCrossRefGoogle Scholar
  50. Roatsch T., Wählisch M., Hoffmeister A., Matz K.-D., Scholten F., Kersten E., Wagner R., Denk T., Neukum G., Porco C.C.: High-resolution Dione atlas derived from Cassini-ISS images. Planet. Space Sci. 56, 1499–1505 (2008)ADSCrossRefGoogle Scholar
  51. Roatsch Th., Jaumann R., Stephan K., Thomas P.C.: Cartographic mapping of the Icy satellites using ISS and VIMS data. In: Dougherty, et al. (eds) Saturn from Cassini-Huygens, Springer, Berlin (2009). doi:10.1007/978-1-4020-9215-2 Google Scholar
  52. Roatsch Th., Wählisch M., Hoffmeister A., Kersten E., Matz K.-D., Scholten F., Wagner R., Denk T., Neukum G., Helfenstein P., Porco C.: High-resolution Atlases of Mimas, Tethys, and Iapetus derived from Cassini-ISS images. Planet. Space Sci. 57, 83–92 (2009b). doi:10.1016/j.pss.2008.10.014 ADSCrossRefGoogle Scholar
  53. Robinson M.S., Davies M.E., Colvin T.R., Edwards K.: A revised control network for Mercury. JGR 104(E12), 847–852 (1999)CrossRefGoogle Scholar
  54. Roncoli, R.: Lunar Constants and Models Document. JPL D-32296 (2005), available at http://ssd.jpl.nasa.gov/?lunar_doc. Accessed 2010 October 18
  55. Russell C.T., Yu Z.J., Kivelson M.G.: The Rotation Period of Jupiter. GRL 28(10), 1911–1912 (2001)ADSCrossRefGoogle Scholar
  56. Russell, C.T., Dougherty, M.K.: Magnetic Fields of the Outer Planets, SSR. January (2010). doi:10.1007/s11214-009-9621-7
  57. Schmidt B.E., Thomas P.C., Bauer J.M., Li J.-Y., McFadden L.A., Mutchler M.J., Radcliffe S.C., Rivkin A.S., Russell C.T., Parker J.Wm., Stern S.A.: The shape and surface variation of 2 Pallas from the Hubble Space Telescope. Science 326, 275–278 (2009). doi:10.1126/science.1177734 ADSCrossRefGoogle Scholar
  58. Seidelmann P.K., Abalakin V.K., Bursa M., Davies M.E., de Bergh C., Lieske J.H., Oberst J., Simon J.L., Standish E.M., Stooke P., Thomas P.C.: Report of the IAU/IAG working group on cartographic coordinates and rotational elements of the planets and satellites: 2000. Celest. Mech. Dyn. Astron. 82, 83–110 (2002)ADSCrossRefGoogle Scholar
  59. Seidelmann P.K., Archinal B.A., A’Hearn M.F., Cruiskshank D.P., Hilton J.L., Keller H.U., Oberst J., Simon J.L., Stooke P., Tholen D.J., Thomas P.C.: Report on the IAU/IAG working group on cartographic coordinates and rotational elements: 2003. Celest. Mech. Dyn. Astron. 91, 203–215 (2005)ADSCrossRefGoogle Scholar
  60. Seidelmann P.K., Archinal B.A., A’Hearn M.F., Conrad A., Consolmagno G.J., Hestroffer D., Hilton J.L., Krasinsky G.A., Neumann G., Oberst J., Stooke P., Tedesco E., Tholen D.J., Thomas P.C., Williams I.P.: Report of the IAU/IAG working group on cartographic coordinates and rotational elements: 2006. Celest. Mech. Dyn. Astron. 98, 155–180 (2007)ADSMATHCrossRefGoogle Scholar
  61. Smith, D., Neumann, B., Arvidson, R.E. Guinness, E.A., Slavney, S.: Mars global surveyor laser altimeter mission experiment gridded data record. NASA Planetary Data System, MGS-M-MOLA-5-MEGDR-L3-V1.0, 2003. Available on-line from http://pds-geosciences.wustl.edu/missions/mgs/megdr.html. Accessed 2010 October 18
  62. Stevenson D.J.: A new spin on Saturn. Nature 441, 35–344 (2006)ADSCrossRefGoogle Scholar
  63. Stiles B.W., Kirk R.L., Lorenz R.D., Hensley S., Lee E., Ostro S.J., Allison M.D., Callahan P.S., Gim Y., Iess L., Percidel Marmo P., Hamilton G., Johnson W.T.K., West R.D.: The Cassini RADAR Team: Determining Titan’s spin state from Cassini RADAR images. Astron. J. 135, 1669–1680 (2008). doi:10.1088/0004-6256/135/5/1669 ADSCrossRefGoogle Scholar
  64. Stiles B.W., Kirk R.L., Lorenz R.D., Hensley S., Lee E., Ostro S.J., Allison M.D., Callahan P.S., Gim Y., Iess L., Percidel Marmo P., Hamilton G., Johnson W.T.K., West R.D.: The Cassini RADAR Team: ERRATUM: Determining Titan’s Spin State from Cassini RADAR Images. Astronomical Journal 139, 311 (2010). doi:10.1088/0004-6256/139/1/311 ADSCrossRefGoogle Scholar
  65. Thomas P.C.: Gravity, tides, and topography on small satellites and asteroids: Application to surface features of the martian satellites. Icarus 105, 326–344 (1993)ADSCrossRefGoogle Scholar
  66. Thomas P.C.: Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission. Icarus 208, 395–401 (2010). doi:10.1016/j.icarus.2010.01.025 ADSCrossRefGoogle Scholar
  67. Thomas P.C., Davies M.E., Colvin T.R., Oberst J., Schuster P., Neukum G., Carr M.H., McEwen A., Schubert G., Belton M.J.S.: The shape of Io from Galileo limb measurements. Icarus 135, 175–180 (1998)ADSCrossRefGoogle Scholar
  68. Thomas P.C., Parker J.Wm., McFadden L.A., Russell C.T., Stern S.A., Sykes M.V., Young E.F.: Differentiation of the asteroid Ceres as revealed by its shape. Nature 437, 224–226 (2005)ADSCrossRefGoogle Scholar
  69. Thomas P.C., Veverka J., Belton M.J.S., Hidy A., A’Hearn M.F., Farnham T.L., Groussin O., Li J.-Y., McFadden L.A., Sunshine J., Wellnitz D., Lisse C., Schultz P., Meech K.J., Delamere W.A.: The shape, topography, and geology of Tempel 1 from Deep Impact observations. Icarus 187, 4–15 (2007)ADSCrossRefGoogle Scholar
  70. Thomas P.C., Joseph J., Carcich B., Veverka J., Clark B.E., Bell J.F., Byrd A.W., Chomko R., Robinson M., Murchie S., Prockter L., Cheng A., Izenberg N., Malin M., Chapman C., McFadden L.A., Kirk R., Gaffey M., Lucey P.G.: Eros: shape, topography, and slope processes. Icarus 155, 18–37 (2002)ADSCrossRefGoogle Scholar
  71. Williams, J.G., Boggs, D.H., Folkner, W.M.: DE421 Lunar Orbit, Physical Librations, and Surface Coordinates. JPL Interoffice Memorandum IOM 335-JW,DB,WF-20080314-001, 14 March (2008). Available as ftp://ssd.jpl.nasa.gov/pub/eph/planets/ioms/de421_moon_coord_iom.pdf. Accessed 2010 October 18
  72. Willner K., Oberst J., Hussmann H., Giese B., Hoffmann H., Matz K.-D., Roatsch T., Duxbury T.: Phobos control point network, rotation, and shape. Earth Planet. Sci. Lett. 294, 541–546 (2010)ADSCrossRefGoogle Scholar
  73. Yu Z.J., Russell C.T.: Rotation Period of Jupiter from the observation of its magnetic field. GRL 36, L20202 (2009). doi:10.1029/2009GL040094 ADSCrossRefGoogle Scholar
  74. Zebker H.A., Stiles B., Hensley S., Lorenz R., Kirk R.L., Lunine J.: Size and shape of Saturn’s moon Titan. Science 324, 921–923 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V.(outside the USA) 2010

Authors and Affiliations

  • B. A. Archinal
    • 1
  • M. F. A’Hearn
    • 2
  • E. Bowell
    • 3
  • A. Conrad
    • 4
  • G. J. Consolmagno
    • 5
  • R. Courtin
    • 6
  • T. Fukushima
    • 7
  • D. Hestroffer
    • 8
  • J. L. Hilton
    • 9
  • G. A. Krasinsky
    • 10
  • G. Neumann
    • 11
  • J. Oberst
    • 12
  • P. K. Seidelmann
    • 13
  • P. Stooke
    • 14
  • D. J. Tholen
    • 15
  • P. C. Thomas
    • 16
  • I. P. Williams
    • 17
  1. 1.U.S. Geological SurveyFlagstaffUSA
  2. 2.University of MarylandCollege ParkUSA
  3. 3.Lowell ObservatoryFlagstaffUSA
  4. 4.W.M. Keck ObservatoryKamuelaUSA
  5. 5.Vatican ObservatoryVatican CityVatican City State
  6. 6.LESIA, Observatoire de Paris, CNRSParisFrance
  7. 7.National Astronomical Observatory of JapanTokyoJapan
  8. 8.IMCCE, Observatoire de Paris, CNRSParisFrance
  9. 9.U.S. Naval ObservatoryWashingtonUSA
  10. 10.Institute for Applied AstronomySt. PetersburgRussia
  11. 11.NASA Goddard Space Flight CenterGreenbeltUSA
  12. 12.DLR Berlin AdlershofBerlinGermany
  13. 13.University of VirginiaCharlottesvilleUSA
  14. 14.University of Western OntarioLondonCanada
  15. 15.University of HawaiiHonoluluUSA
  16. 16.Cornell UniversityIthacaUSA
  17. 17.Queen Mary University of LondonLondonUK

Personalised recommendations