Skip to main content

Advertisement

Log in

Selective Reduction of Phenylacetylene with AlMgO Particles used as an Alternative Water-Reactive Generator of Hydrogen

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A new inorganic material was used to produce hydrogen in situ by contact with water for reduction of unsaturated hydrocarbons. Phenylacetylene reduction into styrene and ethylbenzene was chosen as a model reduction reaction. We show that a fine control over the reaction yield and selectivity can be obtained by controlling the hydrogen release and such parameters of the synthesis as the temperature, water content and the speed of stirring. We found that the largest amount of water at 80 °C and vigorous stirring result in the highest yield and selectivity of the reaction. An alternative way of reaction control is suggested as compared to a conventional way of a catalyst inhibition. The new possibility of the reaction control may be of a wide interest for the laboratory synthesis for a good number of hydrogenation reactions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Irfan M, Glasnov TN, Kappe CO (2011) Chem Sus Chem 4:300

    CAS  Google Scholar 

  2. Lindlar H, Dubuis R (1973) Org Synth 5:880

    Google Scholar 

  3. Na-Chiangmai C, Tiengchad N, Kittisakmontree P, Mekasuwandumrong O, Powell J, Panpranot J (2011) Catal Lett 141:1149

    Article  CAS  Google Scholar 

  4. Domínguez-Domínguez S, Berenguer-Murcia A, Linares-Solano A, Cazorla-Amorós D (2008) J Catal 257:87

    Article  Google Scholar 

  5. Duca D, Liotta LF, Deganello G (1995) Catal Today 24:15

    Article  CAS  Google Scholar 

  6. Papp A, Molnár A, Mastalir A (2005) Appl Cat A 289:256

    Article  CAS  Google Scholar 

  7. Mastalir A, Kiraly Z (2003) J Cat 220:372

    Article  CAS  Google Scholar 

  8. Andriollo A, Esteruelas MA, Meyer U, Oro LA, Sanchez-Delgado RA, Sola E, Valero C, Werner H (1989) J Am Chem Soc 111:7431

    Article  CAS  Google Scholar 

  9. Derien S, Dixneuf PH (2004) J Organomet Chem 689:1382

    Article  CAS  Google Scholar 

  10. Leitmannova E, Svoboda J, Sedláek J, Vohlídal J, Kaer P, ervený L (2010) Appl Cat A 373:34

    Article  Google Scholar 

  11. Dominguez–Dominguez S, Berenguer-Murcia A, Cazorla-Amoros D, Linares-Solano A (2006) J Catal 243:74

    Article  Google Scholar 

  12. Nikolaev SA, Smirnov VV (2009) Gold Bull 42:182

    Article  CAS  Google Scholar 

  13. Nikolaev SA, Permyakov NA, Smirnov VV, Vasil’kov AYu, Lanin SN (2010) Kinet Catal 51:288

    Article  CAS  Google Scholar 

  14. J. Petrovic, G. Thomas (2008) U.S. Department of Energy, version 1.0

  15. M. N. Larichev, A. N. Jigatch, I. O. Leipunsky, M. L. Kuskov, A. A. Pshechenkov (2003). In: Pros. of 9 International Workshop on Combustion and Propulsion ‘Novel energetic materials and applications’,14–18 Sept 2003. La Spezia, Italy, pp 14–1

  16. Li Y, Song W, Xie C, Zeng D, Wang A, Hu M (2006) Mat Chem Phys 97:127

    Article  CAS  Google Scholar 

  17. Bunker CE, Smith MJ (2011) J Mater Chem 21:12173

    Article  CAS  Google Scholar 

  18. Soler L, Macanás J, Munoz M, Casado J (2007) J Pow Sour 169:144

    Article  CAS  Google Scholar 

  19. Bunker BC, Nelson GC, Zavadil KR, Barbour JC, Wall FD, Sullivan JP, Windisch CF Jr, Engelhardt MH, Baer DR (2002) J Phys Chem B 106:4705

    Article  CAS  Google Scholar 

  20. Schoenitz M, Chen C-M, Dreizin EL (2009) J Phys Chem B 113:5136

    Article  CAS  Google Scholar 

  21. Deng Z-Y, Liu Y-F, Tanaka Y, Ye J, Sakka Y (2005) J Am Ceram Soc 88:977

    Article  CAS  Google Scholar 

  22. Deng Z-Y, Ferreira JMF, Tanaka Y, Ye J (2007) J Am Ceram Soc 90:1521

    Article  CAS  Google Scholar 

  23. Parmuzina AV, Kravchenko OV (2008) Int J Hydrogen Energy 33:3037

    Article  Google Scholar 

  24. Kravchenko OV, Semenenko KN, Bulychev BM, Kalmykov KB (2005) J Alloys Compd 397:58

    Article  CAS  Google Scholar 

  25. Parmuzina AV, Kravchenko OV, Bulychev BM, Shkol’nikov EI, Burlakova AG (2009) Russ Chem Bull 58:493

    Article  CAS  Google Scholar 

  26. Sárkány A, Weiss AH, Guczi L (1986) J Catal 98:550

    Article  Google Scholar 

  27. Anderson JR (1975) Structure of Metallic Catalysts. Academic Press, London, p 296

    Google Scholar 

  28. Al-Ammar AS, Webb G (1979) J Chem Soc Faraday Trans l(75):1900

    Google Scholar 

  29. Jackson SD, Shaw LA (1996) Appl Catal A 134:91

    Article  CAS  Google Scholar 

  30. Descamps C, Coquelet C, Bouallou C, Richon D (2005) Thermochim Acta 430:1

    Article  CAS  Google Scholar 

  31. Webb G (1978) In: Bamford CH, Tipper CFH (eds) Comprehensive Chemical Kinetic, 21st edn. Elsevier, Amsterdam, p 1

    Google Scholar 

  32. Webb G (1990) Catal Today 7:139

    Article  CAS  Google Scholar 

  33. Jackson SD, Hardy H, Kelly GJ, Shaw LA (1997) In: Blaser HU, Baiker A, Prins R (eds) Heterogeneous catalysis and fine chemicals iv. Elsevier, Amsterdam

    Google Scholar 

  34. Hardacre C, Mullan EA, Rooney DW, Thompson JM, Yablonsky GS (2006) Chem Eng Sci 61:6995

    Article  CAS  Google Scholar 

  35. Tysoe WT, Nyberg GL, Lambert RM (1983) J Chem Soc Chem Commun, 623

  36. Rogers DW, McLafferty FJ (1971) Tetrahedron 27:3765

    Article  CAS  Google Scholar 

  37. Abboud J-LM, Jimenez P, Roux MV, Turrion C, Lopez-Mardomingo C, Podosenin A, Rogers DW, Liebman JF (1995) J Phys Org Chem 8:15

    Article  CAS  Google Scholar 

  38. Bartell FE, Thomas TL, Fu Y (1951) J Phys Chem 55:1456

    Article  CAS  Google Scholar 

  39. Shutt E, Winterbottom JM (1971) Platinum Metals Rev 15:94

    CAS  Google Scholar 

  40. Terasawa M, Yamamoto H, Kaneda K, Imanaka T, Teranishi S (1979) J Catal 57:315

    Article  CAS  Google Scholar 

  41. Mironova LV, Belykh BL, Usova V, Shmidt FK (1985) Kinet Katal 26:469

    CAS  Google Scholar 

  42. Chen SY, Smith JM, McCoy BJ (1987) Chem Eng Sci 42:293

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the Mexican National Council of Science and Technology (CONACyT) is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio A. Rivero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozina, A., Iturbe, J.L. & Rivero, I.A. Selective Reduction of Phenylacetylene with AlMgO Particles used as an Alternative Water-Reactive Generator of Hydrogen. Catal Lett 143, 739–747 (2013). https://doi.org/10.1007/s10562-013-1019-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1019-1

Keywords

Navigation