Skip to main content

Advertisement

Log in

Spatio-temporal Reconstruction of Neural Sources Using Indirect Dominant Mode Rejection

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Adaptive minimum variance based beamformers (MVB) have been successfully applied to magnetoencephalogram (MEG) and electroencephalogram (EEG) data to localize brain activities. However, the performance of these beamformers falls down in situations where correlated or interference sources exist. To overcome this problem, we propose indirect dominant mode rejection (iDMR) beamformer application in brain source localization. This method by modifying measurement covariance matrix makes MVB applicable in source localization in the presence of correlated and interference sources. Numerical results on both EEG and MEG data demonstrate that presented approach accurately reconstructs time courses of active sources and localizes those sources with high spatial resolution. In addition, the results of real AEF data show the good performance of iDMR in empirical situations. Hence, iDMR can be reliably used for brain source localization especially when there are correlated and interference sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. BrainStorm, Matlab Toolbox. http://neuroimage.usc.edu/brainstorm/2017.

  2. A point of the posterior root of the zygomatic arch lying immediately in front of the upper end of the tragus.

References

  • Baillet S, Mosher JC, Leahy RM (2001) Electromagnetic brain mapping. IEEE Signal Process Mag 18(6):14–30

    Article  Google Scholar 

  • Berg P, Scherg M (1994) A fast method for forward computation of multiple-shell spherical head models. Electroencephalogr Clin Neurophysiol 90(1):58–64

    Article  PubMed  CAS  Google Scholar 

  • Brookes M, Stevenson C, Barnes G, Hillebrand A, Simpson M, Francis S, Morrisa P (2007) Beamformer reconstruction of correlated sources using a modified source model. Neuroimage 34(4):1454–1465

    Article  PubMed  Google Scholar 

  • Brookes MJ, Vrba J, Robinson SE, Stevenson CM, Peters AP, Barnes GR, Hillebrand A, Morris PG (2008) Optimising experimental design for MEG beamformer imaging. Neuroimage 39(4):1788–1802

    Article  PubMed  Google Scholar 

  • Chen YS, Cheng CY, Hsieh JC, Chen LF (2006) Maximum contrast beamformer for electromagnetic mapping of brain activity. IEEE Trans Biomed Eng 53(9):1765–1774

    Article  PubMed  Google Scholar 

  • Chowdhury RA, Younes Z, Tanguy H, Marcel H, Eliane K, Jean-Marc L, Christophe. G (2015) MEG–EEG information fusion and electromagnetic source imaging: from theory to clinical application in epilepsy. Brain Topogr 18(6):785–812

    Article  Google Scholar 

  • Dai Y, Zhang W, Dickens DL, He B (2012) Source connectivity analysis from MEG and its application to epilepsy source localization. Brain Topogr 25(2):157–166

    Article  PubMed  Google Scholar 

  • Dalal S, Sekihara K, Nagarajan S (2006) Modified beamformers for coherent source region suppression. IEEE Trans Biomed Eng 53(7):1357–1363

    Article  PubMed  PubMed Central  Google Scholar 

  • Dinh C, Strohmeier D, Luessi M, Güllmar DG, Baumgarten D, Haueisen J, Hamalainen MS (2015) Real-time MEG source localization using regional clustering. Brain Topogr 28(6):771–784

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorodnitsky J, George, Rao B (1995) Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. Electroencephalogr Clin Neurophysiol 95(4)231–251

    Article  PubMed  CAS  Google Scholar 

  • Greenblatt RE, Ossadtchi A, Pflieger ME (2005) Local linear estimators for the bioelectromagnetic inverse problem. IEEE Trans Signal Process 53(9):3403–3412

    Article  Google Scholar 

  • Haufe S, Arne E (2016) A simulation framework for benchmarking EEG-based brain connectivity estimation methodologies. Brain Topogr. https://doi.org/10.1007/s10548-016-0498-y

    Article  PubMed  Google Scholar 

  • Huang M-X, Shih JJ, Lee RR, Harrington DL, Thoma RJ, Weisend MP, Hanlon F, Paulson KM, Li T, Martin K, Miller GA, Canive JM (2004) Commonalities and differences among vectorized beamformers in electromagnetic source imaging. Brain Topogr 16(3):139–158

    Article  PubMed  CAS  Google Scholar 

  • Hui HB, Pantazis D, Bressler SL, Leahy RM (2010) Identifying true cortical interactions in MEG using the nulling beamformer. Neuroimage 49(4):3161–3174

    Article  PubMed  Google Scholar 

  • Hyvärinen A, Karhunen J, Oja E (2004) Independent component analysis, vol 46. Wiley, New York

  • Jonmohamadi Y, Poudel G, Innes C, Weiss D, Krueger R, Jones R (2014) Comparison of beamformers for EEG source signal reconstruction. Biomed Signal Process Control 14:175–188

    Article  Google Scholar 

  • Kimura T, Kako M, Kamiyama H, Ishiyama A, Kasai N, Watanabe Y (2007) Inverse solution for time-correlated multiple sources using Beamformer method, vol 1300. International Congress Series, pp 417–420

  • Mills T, Marc L, Sandra NM, Margot JT, Maher AQ (2012) Techniques for detection and localization of weak hippocampal and medial frontal sources using beamformers in MEG. Brain Topogr 25(3):248–263

    Article  PubMed  Google Scholar 

  • Moiseev A, Herdman AT (2013) Multi-core beamformers: derivation, limitations and improvements. Neuroimage 71:135–146

    Article  PubMed  Google Scholar 

  • Moiseev A, Gaspar JM, Schneider JA, Herdman AT (2011) Application of multi-source minimum variance beamformers for reconstruction of correlated neural activity. NeuroImage 58(2):481–496

    Article  PubMed  Google Scholar 

  • Mosher JC, Leahy RM (1992) Multiple dipole modeling and localization from spatiotemporal MEG data. IEEE Trans Biomed Eng 39(6):541–557

    Article  PubMed  CAS  Google Scholar 

  • Mosher JC, Leahy RM (1998) Recursive MUSIC: a framework for EEG and MEG source localization. IEEE Trans Biomed Eng 45(11):1342–1354

    Article  PubMed  CAS  Google Scholar 

  • Mosher JC, Leahy RM (1999) Source localization using recursively applied and projected (RAP) MUSIC. IEEE Trans Signal Process 47(2):332–340

    Article  Google Scholar 

  • Pascual-Marqui RD (2002) Standardized low resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24:5–12

    PubMed  Google Scholar 

  • Popescu M, Popescu E, Chan T, Blunt S, Lewine J (2008) Spatial-temporal reconstruction of bilateral auditory steady state responses using MEG beamformers. IEEE Trans Biomed Eng 55(3):1092–1102

    Article  PubMed  Google Scholar 

  • Quraan M, Cheyne D (2010) Reconstruction of correlated brain activity with adaptive spatialfilters in MEG. NeuroImage 49(3):2387–2400

    Article  PubMed  Google Scholar 

  • Santos EL, Zoltowski MD, Rangaswamy M (2007) Indirect dominant mode rejection: a solution to low sample support beamforming. IEEE Trans Signal Process 55(7):3283–3293

    Article  Google Scholar 

  • Sekihara K, Nagarajan SS (2008) Adaptive spatial filters for electromagnetic brain imaging. Springer, Berlin

    Google Scholar 

  • Sekihara K, Nagarajan S, Poeppel D, Marantz A, Miyashita Y (2001) Reconstructing spatio-temporal activities of neural sources using an MEG Vector beamformer technique. IEEE Trans Biomed Eng 48(7):760–771

    Article  PubMed  CAS  Google Scholar 

  • Sekihara K, Nagarajan S, Poeppel D, Marantz A (2004) Asymptotic SNR of scalar and vector minimum-variance beamformers for neuromagnetic source reconstruction. IEEE Trans Biomed Eng 51(10):1726–1734

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahbazi F, Ewald A, Nolte G (2015) Self-consistent MUSIC: an approach to the localization of true brain interactions from EEG/MEG data. Neuroimage 112(6):299–309

    Article  PubMed  Google Scholar 

  • Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci. https://doi.org/10.1155/2011/879716

    Article  PubMed  PubMed Central  Google Scholar 

  • Tikhonov AN, Arsenin VY (1997) Solutions of Ill-posed problems. Wiley, New York, NY

    Google Scholar 

  • Uutela K, Hamalainen M, Somersalo E (1999) Visualization of magnetoencephalographic data using minimum current estimates. Neuroimage 10(2):173–180

    Article  PubMed  CAS  Google Scholar 

  • Van Veen B, van Drongelen W, Yuchtman M, Suzuki A (1997) Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 44(9):867–880

    Article  PubMed  Google Scholar 

  • Xiang Y, Peng D, Yang Z (2015) Blind source separation: dependent component analysis. Springer, New York

    Book  Google Scholar 

  • Xu XL, Xu B, He B (2004) An alternative subspace approach to EEG dipole source localization. Phys Med Biol 49:327–343

    Article  PubMed  Google Scholar 

  • Yeung N, Bogacz R, Holroyd CB, Cohen JD (2004) Detection of synchronized oscillations in the electroencephalogram: an evaluation of methods. Psychophysiology 41(6)822–832

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Elizabeth Bock, Esther Florin, Peter Donhauser, Francois Tadel and Sylvain Baillet from McGill University for providing the rest and AEF dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Mohammadzadeh Asl.

Additional information

Handling Editor: Christoph M. Michel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafadideh, A.T., Asl, B.M. Spatio-temporal Reconstruction of Neural Sources Using Indirect Dominant Mode Rejection. Brain Topogr 31, 591–607 (2018). https://doi.org/10.1007/s10548-018-0645-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-018-0645-8

Keywords

Navigation