Skip to main content

Advertisement

Log in

Techniques for Detection and Localization of Weak Hippocampal and Medial Frontal Sources Using Beamformers in MEG

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Magnetoencephalography provides precise information about the temporal dynamics of brain activation and is an ideal tool for investigating rapid cognitive processing. However, in many cognitive paradigms visual stimuli are used, which evoke strong brain responses (typically 40–100 nAm in V1) that may impede the detection of weaker activations of interest. This is particularly a concern when beamformer algorithms are used for source analysis, due to artefacts such as “leakage” of activation from the primary visual sources into other regions. We have previously shown (Quraan et al. 2011) that we can effectively reduce leakage patterns and detect weak hippocampal sources by subtracting the functional images derived from the experimental task and a control task with similar stimulus parameters. In this study we assess the performance of three different subtraction techniques. In the first technique we follow the same post-localization subtraction procedures as in our previous work. In the second and third techniques, we subtract the sensor data obtained from the experimental and control paradigms prior to source localization. Using simulated signals embedded in real data, we show that when beamformers are used, subtraction prior to source localization allows for the detection of weaker sources and higher localization accuracy. The improvement in localization accuracy exceeded 10 mm at low signal-to-noise ratios, and sources down to below 5 nAm were detected. We applied our techniques to empirical data acquired with two different paradigms designed to evoke hippocampal and frontal activations, and demonstrated our ability to detect robust activations in both regions with substantial improvements over image subtraction. We conclude that removal of the common-mode dominant sources through data subtraction prior to localization further improves the beamformer’s ability to project the n-channel sensor-space data to reveal weak sources of interest and allows more accurate localization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SAD:

Subtraction of averaged data

SUD:

Subtraction of unaveraged data

IM:

Image subtraction

References

  • Bardouille T, Ross B (2008) MEG imaging of sensorimotor areas using inter-trial coherence in vibrotactile steady-state responses. Neuroimage 42:323–331

    Article  PubMed  CAS  Google Scholar 

  • Bish JP, Martin T, Houck J, Ilmoniemi RJ, Tesche C (2004) Phase shift detection in thalamo-cortical oscillations using magnetoencephalography. Neurosci Lett 362:48–52

    Article  PubMed  CAS  Google Scholar 

  • Breier JI, Simos PG, Zouridakis G, Papanicolaou AC (1998) Relative timing of neuronal activity in distinct temporal lobe areas during a recognition memory task for words. J Clin Exp Neuropsychol 20(6):782–790

    Article  PubMed  CAS  Google Scholar 

  • Breier JI, Simos PG, Zouridakis G, Papanicolaou AC (1999) Lateralization of cerebral activation in auditory verbal and non-verbal memory tasks using magnetoencephalography. Brain Topogr 12(2):89–97

    Article  PubMed  CAS  Google Scholar 

  • Breier JI, Simos PG, Zouridakis G, Papanicolaou AC (2000) Lateralization of activity associated with language function using magnetoencephalography: a reliability study. J Clin Neurophysiol 17(5):503–510

    Article  PubMed  CAS  Google Scholar 

  • Brookes MJ, Stevenson CM, Barnes GR, Hillebrand A, Simpson MI, Francis ST, Morris PG (2007) Beamformer reconstruction of correlated sources using a modified source model. Neuroimage 34(4):1454–1465

    Article  PubMed  Google Scholar 

  • Brookes MJ, Vrba J, Robinson SE, Stevenson CM, Peters AM, Barnes GR, Hillebrand A, Morris PG (2008) Optimising experimental design for MEG beamformer imaging. Neuroimage 39(4):1788–1802

    Article  PubMed  Google Scholar 

  • Brookes MJ, Zumer JM, Stevenson CM, Hale JR, Barnes GR, Vrba J, Morris PG (2010) Investigating spatial specificity and data averaging in MEG. Neuroimage 49(1):525–538

    Article  PubMed  Google Scholar 

  • Cabeza R, Nyberg L (2000) Neural basis of learning and memory: functional neuroimaging evidence. Curr Opin Neurol 13:415–421

    Article  PubMed  CAS  Google Scholar 

  • Campi C, Pascarella A, Sorrentino A, Piana M (2008) A Rao-Blackwellized particle filter for magnetoencephalography. Inverse Probl Imaging 24:025023

    Google Scholar 

  • Carlson BD (1988) Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Trans. Aerosp Electron Syst 24:397–401

    Article  Google Scholar 

  • Carlson S, Martinkauppi S, Rämä P, Salli E, Korvenoha A, Aronen HJ (1998) Distribution of cortical activation during visuospatial n-back tasks as revealed by functional magnetic resonance imaging. Cereb Cortex 8:143–152

    Article  Google Scholar 

  • Cornwell BR, Baas JM, Johnson L, Holroyd T, Carver FW, Lissek S, Grillon C (2007) Neural responses to auditory stimulus deviance under threat of electric shock revealed by spatially-filtered magnetoencephalography. Neuroimage 37:282–289

    Article  PubMed  Google Scholar 

  • Cornwell BR, Carver FW, Coppola R, Johnson L, Alvarez R, Grillon C (2008a) Evoked amygdala responses to negative faces revealed by adaptive MEG beamformers. Brain Res 1244:103–112

    Article  PubMed  CAS  Google Scholar 

  • Cornwell BR, Johnson LL, Holroyd T, Carver FW, Grillon C (2008b) Human hippocampal and parahippocampal theta during goal-directed spatial navigation predicts performance on a virtual Morris water maze. J Neurosci 28(23):5983–5990

    Article  PubMed  CAS  Google Scholar 

  • Cornwell BR, Salvadore G, Colon-Rosario V, Latov DR, Holroyd T, Carver FW, Coppola R, Manji HK, Zarage CA, Grillon C (2010) Abnormal hippocampal functioning and impaired spatial navigation in depressed individuals: evidence from whole-head magnetoencephalography. Am J Psyciatry 167(7):836–844. doi:10.1176/appi.ajp.2009.09050614

    Article  Google Scholar 

  • Dalal SS, Sekihara K, Nagarajan SS (2006) Modified beamformers for coherent source region suppression. IEEE Trans Biomed Eng 53(7):1357–1363

    Article  PubMed  Google Scholar 

  • Driscoll I, Hamilton DA, Yeo RA, Brooks WM, Sutherland RJ (2005) Virtual navigation in humans: the impact of age, sex, and hormones on place learning. Horm Behav 47(3):326–335

    Article  PubMed  CAS  Google Scholar 

  • Greenberg DL, Rice HJ, Cooper JJ, Cabeza R, Rubin DC, Labar KS (2005) Co-activation of the amygdale, hippocampus and inferior frontal gyrus during autobiographic memory retrieval. Neuropsychologia 43(5):659–674

    Article  PubMed  Google Scholar 

  • Hamada Y, Sugino K, Kado H, Suzuki R (2004) Magnetic fields in the human hippocampal area evoked by a somatosensory oddball task. Hippocampus 14(4):426–433

    Article  PubMed  Google Scholar 

  • Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497

    Article  Google Scholar 

  • Hanlon FM, Weisend MP, Huang M, Lee RR, Moses SN, Paulson KM, Thoma RJ, Miller GA, Canive JM (2003) A non-invasive method for observing hippocampal function. NeuroReport 14(15):1957–1960

    Article  PubMed  Google Scholar 

  • Hanlon FM, Weisend MP, Yeo RA, Huang M, Lee RR, Thoma RJ, Moses SN, Paulson KM, Miller GA, Canive JM (2005) A specific test of hippocampal deficit in schizophrenia. Behav Neurosci 119(4):863–875

    Article  PubMed  Google Scholar 

  • Hari R, Forss N (1999) Magnetoencephalography in the study of human somatosensory cortical processing. Philos Trans R Soc Lond B Biol Sci 354(1387):1145–1154

    Article  PubMed  CAS  Google Scholar 

  • Hung Y, Smith ML, Bayle DJ, Mills T, Cheyne D, Taylor MJ (2010) Unattended emotional faces elicit early lateralized amygdala-frontal and fusiform activations. Neuroimage 50(2):727–733

    Article  PubMed  Google Scholar 

  • Ioannides AA, Liu ML, Liu LC, Bamidis PD, Hellstrand E, Stephan KM (1995) Magnetic field tomography of cortical and deep processes: examples of “real-time mapping” of averaged and single trial MEG signals. Int J Psychophysiol 20:161–175

    Article  PubMed  CAS  Google Scholar 

  • Kapur N, Friston KJ, Young A, Frith CD, Frackowiak RSJ (1995) Activation of human hippocampal formation during memory for faces: a PET study. Cortex 31:99–108

    PubMed  CAS  Google Scholar 

  • Kensinger EA, Corkin S (2003). Memory enhancement of emotional words: are emotional words more vividly remembered than neutral words? Mem Cognit 8:1169–1190

    Google Scholar 

  • Kilner JM, Salenius S, Baker SN, Jackson A, Hari R, Lemon RN (2003) Task-dependent modulations of cortical oscillatory activity in human subjects during a bimanual precision grip task. Neuroimage 18(1):67–73

    Article  PubMed  CAS  Google Scholar 

  • Kirsch P, Achenbach C, Kirsch M, Heinzmann M, Schienle A, Vaitl D (2003) Cerebellar and hippocampal activation during eyeblink conditioning depends on the experimental paradigm: a MEG study. Neural Plast 10(4):291–301

    Article  PubMed  Google Scholar 

  • Long CJ, Purdon RL, Temereanca S, Desai NU, Hamalainen M, Brown EN (2006) Large scale Kalman filtering solutions to the electrophysiological source localization problem–a MEG case study. Conf Proc IEEE Eng Med Biol Soc 1:4532–4535

    PubMed  CAS  Google Scholar 

  • Lui L, Ioannides AA, Streit M (1999) Single trial analysis of neurophysiological correlates of the recognition of complex objects and facial expressions of emotion. Brain Topogr 11:291–303

    Article  Google Scholar 

  • Luo Q, Holroyd T, Jones M, Hendler T, Blair J (2007) Neural dynamics for facial threat processing as revealed by gamma band synchronization using MEG. Neuroimage 34:839–847

    Article  PubMed  Google Scholar 

  • Martin T, McDaniel MA, Guynn MJ, Houck JM, Woodruff CC, Bish JP, Moses SN, Kicic D, Tesche CD (2007) Brain regions and their dynamics in prospective memory retrieval: a MEG study. Int J Psychophysiol 64(3):247–258

    Article  PubMed  Google Scholar 

  • Moses SN, Houck JM, Martin T, Hanlon FM, Ryan JD, Thoma RJ, Weisend MP, Jackson EM, Pekkonen E, Tesche CD (2007) Dynamic Neural activity recorded from human amygdala during fear conditioning using magnetoencephalography. Brain Res Bull 71(5):452–460

    Google Scholar 

  • Moses SN, Ryan JD, Bardouille T, Kovacevic N, Hanlon FM, McIntosh AR (2009) Semantic information alters neural activation during transverse patterning performance. Neuroimage 46(3):863–873

    Article  PubMed  Google Scholar 

  • Nishitani N, Nagamine T, Shibasaki H (1998) Modality specific subregions in human inferior parietal lobule: a magnetoencephalographic study during cognitive tasks. Neurosci Lett 252(2):79–82

    Article  Google Scholar 

  • Nyberg L, Marklund P, Persson J, Cabeza R, Forkstam C, Petersson KM, Ingvar M (2003) Common prefrontal activations during working memory, episodic memory, and semantic memory. Neuropsychologia 41(3):371–377

    Article  PubMed  Google Scholar 

  • Papanicolaou AC, Simos PG, Castillo EM, Breier JI, Katz JS, Wright AA (2002) The hippocampus and memory of verbal and pictorial material. Learn Mem 9(3):99–104

    Article  PubMed  Google Scholar 

  • Pascarella A, Sorrentino A, Campi C, Piana M (2010) Particle filters, beamformersand multiple signal classification for the analysis of magnetoencephalographictime series: a comparison of algorithms. Inverse Probl Imaging 4(1):169–190

    Article  Google Scholar 

  • Pochon JB, Lewy R, Fossati P, Lehericy S, Poline JB, Pillon B, Le Bihan D, Dubois B (2002) The neural system that bridges reward and cognition in humans: an fMRI study. Proc Natl Acad Sci USA 99:5669–5674

    Article  PubMed  CAS  Google Scholar 

  • Prieto EA, Barnikol UB, Soler EP, Dolan K, Hesselmann G, Mohlberg H, Amunts K, Zilles K, Niedeggen M, Tass PA (2007) Timing of V1/V2 and V5 + activations during coherent motion of dots: an MEG study. Neuroimage 37(4):1384–1395

    Article  PubMed  Google Scholar 

  • Quraan MA, Cheyne D (2010) Reconstruction of correlated brain activity with adaptive spatial filters in MEG. Neuroimage 49(3):2387–2400

    Article  PubMed  Google Scholar 

  • Quraan MA, Moses SN, Hung Y, Mills T, Taylor MJ (2011) Detection and localization of hippocampal activity using beamformers with MEG: a detailed investigation using simulations and empirical data. Hum Brain Mapp 32(5):812–827

    Article  PubMed  Google Scholar 

  • Reddy VU, Paulraj A, Kailath T (1987) Performance analysis of the optimum beamformer in the presence of correlated sources and its behavior under spatial smoothing. IEEE Trans Acoust Speech Signal Process 35:927–936

    Article  Google Scholar 

  • Rickard TC, Verfaellie M, Grafman J (2006) Transverse patterning and human amnesia. J Cogn Neurosci 18(10):1723–1733

    Article  PubMed  Google Scholar 

  • Riggs L, Moses SN, Bardouille T, Herdman AT, Ross B, Ryan JD (2009) A complementary analytic approach to examining medial temporal lobe sources using magnetoencephalography. Neuroimage 45(2):627–642

    Article  PubMed  Google Scholar 

  • Schacter DL, Reiman E, Uecker A, Polster MR, Yun LS, Cooper LA (1995) Brain regions associated with retrieval of structurally coherent visual information. Nature 376:587–590

    Article  PubMed  CAS  Google Scholar 

  • Sekihara K, Nagarajan SS (2008) Adaptive spatial filters for electromagnetic brain imaging, vol 11. Springer, Berlin

    Google Scholar 

  • Sekihara K, Poeppel D, Marantz A, Phillips C, Koizumi H, Miyashita Y (1998) MEG Covariance Difference Analysis: A Method to Extract Target Source Activities by Using Task and Control Measurements. IEEE Trans Biomed Eng 45(1):87–97

    Article  PubMed  CAS  Google Scholar 

  • Sekihara K, Nagarajan SS, Poeppel D, Marantz A, Miyashita Y (2001) Reconstructing spatio-temporal activities of neural sources using an MEG vector beamformer technique. IEEE Trans Biomed Eng 48(7):760–771

    Article  PubMed  CAS  Google Scholar 

  • Simpson MI, Hadjipapas A, Barnes GR, Furlong PL, Witton C (2005) Imaging the dynamics of the auditory steady-state evoked response. Neurosci Lett 385(3):195–197

    Article  PubMed  CAS  Google Scholar 

  • Sorrentino A, Parkkonen L, Pascarella A, Campi C, Piana M (2009) Dynamical MEG source modeling with multi-target Bayesian filtering. Hum Brain Mapp 30(6):1911–1921

    Article  PubMed  Google Scholar 

  • Stephen JM, Ranken DM, Aine CJ, Weisend MP, Shih JJ (2005) Differentiability of simulated MEG hippocampal, medial temporal and neocortical temporal epileptic spike activity. J Clin Neurophysiol 22:388–401

    PubMed  Google Scholar 

  • Streit M, Ioannides AA, Liu L, Wölwer W, Dammers J, Gross J, Gaebel W, Müller-Gärtner HW (1999) Neurophysiological correlates of the recognition of facial expressions of emotion as revealed by magnetoencephalography. Brain Res Cogn Brain Res 7:481–491

    Article  PubMed  CAS  Google Scholar 

  • Squire LR (1992) Memeory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 99:195–231

    Article  PubMed  CAS  Google Scholar 

  • Taulu S, Simola J, Kajola M (2005) Applications of the signal space separation method. IEEE Trans Sig Proc 53(9):3359–3372

    Article  Google Scholar 

  • Tendolkar I, Rugg M, Fell J, Vogt H, Scholz M, Hinrichs H, Heinze HJ (2000) A magnetoencephalographic study of brain activity related to recognition memory in healthy young human subjects. Neurosci Lett 280(1):69–72

    Article  PubMed  CAS  Google Scholar 

  • Tesche CD (1996) Non-invasive imaging of neuronal population dynamics in human thalamus. Brain Res 729(2):253–258

    Article  PubMed  CAS  Google Scholar 

  • Tesche CD (1997) Non-invasive detection of ongoing neuronal population activity in normal human hippocampus. Brain Res 749(1):53–60

    Article  PubMed  CAS  Google Scholar 

  • Tesche CD, Karhu J (2000) Theta oscillations index human hippocampal activation during a working memory task. Proc Natl Acad Sci USA 97(2):919–924

    Article  PubMed  CAS  Google Scholar 

  • Tikhonov AN (1963) Solution of incorrectly formulated problems and the regularization method. Sov Math Dokl 4:1035–1038

    Google Scholar 

  • Tsuchida A, Fellows LK (2009) Lesion evidence that two distinct regions within prefrontal cortex are critical for n-back performance in humans. J Cogn Neurosci 21:2263–2275

    Article  PubMed  Google Scholar 

  • Van Veen BD, van Drongelen WD, Yuchtman M, Suzuki A (1997) Localization of Brain Electrical Activity via Linearly Constrained Minimum Variance Spatial Filtering. IEEE Trans Biomed Eng 44:867–880

    Article  PubMed  Google Scholar 

  • Wilson H, Moiseev A, Podin S, Quraan M (2007) Continuous head localization and data correction in MEG. In: Proceedings of the 15th International Conference in Biomagnetism, Vancouver, pp 623–626

  • Wipf D, Nagarajan S (2009) A unified Bayesian framework for MEG/EEG source imaging. Neuroimage 44(3):947–966

    Article  PubMed  Google Scholar 

  • Yonelinas AP, Otten LJ, Shaw KN, Rugg MD (2005) Separating brain regions involved in recollection and familiarity in recognition memory. J Neurosci 25(11):3002–3008

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a CIHR grant awarded to MJT (MOP 81161), and an NSERC discovery grant awarded to SNM. The authors would like to thank Yuwen Hung and Laura Hopf for data collection and contributions to the analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher A. Quraan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mills, T., Lalancette, M., Moses, S.N. et al. Techniques for Detection and Localization of Weak Hippocampal and Medial Frontal Sources Using Beamformers in MEG. Brain Topogr 25, 248–263 (2012). https://doi.org/10.1007/s10548-012-0217-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-012-0217-2

Keywords

Navigation