Advertisement

Biomedical Microdevices

, 20:104 | Cite as

Flattened fiber-optic ATR sensor enhanced by silver nanoparticles for glucose measurement

  • Wenwen Li
  • Changyue Sun
  • Songlin Yu
  • Zhihua Pu
  • Penghao Zhang
  • Kexin Xu
  • Zhenqiang SongEmail author
  • Dachao LiEmail author
Article
  • 74 Downloads

Abstract

This paper proposes a novel fiber attenuated total reflection (ATR) sensor with silver nanoparticles (AgNPs) on the flattened structure based on mid-infrared spectroscopy for detecting low concentration of glucose with high precision. The flattened structure was designed to add the effective optical path length to improve the sensitivity. AgNPs were then deposited on the surface of the flattened area of the fiber via chemical silver mirror reaction for further improving the sensitivity by enhancing the infrared absorption. Combining the AgNPs modified flattened fiber ATR sensor with a CO2 laser showed a strong mid-infrared glucose absorption, with an enhancement factor of 4.30. The glucose concentration could be obtained by a five-variable partial least-squares model with a root-mean-square error of 4.42 mg/dL, which satisfies clinical requirements. Moreover, the fiber-based technique provides a pretty good method to fabricate miniaturized ATR sensors that are suitable to be integrated into a microfluidic chip for continuous glucose monitoring with high sensitivity.

Keywords

Attenuated total reflection sensor Flattened structure AgNPs Mid-infrared spectroscopy Continuous glucose monitoring 

Notes

Funding

This work was supported by the National Natural Science Foundation of China (No.81571766), the National Key Research and Development Program of China (No.2017YFA0205103), and the 111 Project of China (No.B07014).

Compliance with ethical standards

Conflicts of interest

The authors declare that there are no conflicts of interest related to this article.

References

  1. M. Ahmad, L.L. Hench, Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers. Biosens. Bioelectron. 20(7), 1312–1319 (2005)CrossRefGoogle Scholar
  2. T. Bailey, H. Zisser, A. Chang, New features and performance of a next-generation SEVEN-day continuous glucose monitoring system with short lag time. Diabetes Technol The 11(12), 749–755 (2009)CrossRefGoogle Scholar
  3. Y.Z. Cao, W. Zhang, R. Liu, W.J. Zhang, K.X. Xu, Study of specificity for noninvasive glucose measurements based on two-dimensional correlation mid-infrared spectroscopy. Proc. SPIE 8229 (2012)Google Scholar
  4. K.H. Cha, M.E. Meyerhoff, Compatibility of nitric oxide release with implantable enzymatic glucose sensors based on osmium (III/II) mediated electrochemistry. ACS Sens. 2(9), 1262–1266 (2017)CrossRefGoogle Scholar
  5. R.L.J. Chang, J. Yang, Surface-controlled Electroless deposition method in the preparation of stacked silver nanoparticles on germanium for surface-enhanced infrared absorption measurements. Appl. Spectrosc. 64(2), 211–218 (2010)CrossRefGoogle Scholar
  6. U. Damm, V.R. Kondepati, H.M. Heise, Continuous reagent-free bed-side monitoring of glucose in biofluids using infrared spectrometry and micro-dialysis. Vib. Spectrosc. 43(1), 184–192 (2007)CrossRefGoogle Scholar
  7. J.M. Delgado, J.M. Orts, J.M. Perez, A. Rodes, Sputtered thin-film gold electrodes for in situ ATR-SEIRAS and SERS studies. J. Electroanal. Chem. 617(2), 130–140 (2008)CrossRefGoogle Scholar
  8. P. Dumas, R.G. Tobin, P.L. Richards, Study of adsorption states and interactions of CO on evaporated noble metal surfaces by infrared absorption spectroscopy. II. Gold and copper. Surface Science 171(3), 579–599 (1986)Google Scholar
  9. A. Hartstein, J.R. Kirtley, J.C. Tsang, Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers. Phys. Rev. Lett. 45(3), 201–204 (1980)CrossRefGoogle Scholar
  10. H.M. Heise, G. Voigt, P. Lampen, L. Kupper, S. Rudloff, G. Werner, Multivariate calibration for the determination of analytes in urine using mid-infrared attenuated total reflection spectroscopy. Appl. Spectrosc. 55(4), 434–443 (2001)CrossRefGoogle Scholar
  11. D.B. Keenan, J.J. Mastrototaro, S.A. Weinzimer, G.M. Steil, Interstitial fluid glucose time-lag correction for real-time continuous glucose monitoring. Biomed Signal Proces 8(1), 81–89 (2013)CrossRefGoogle Scholar
  12. N. Khedmi, M. Ben Rabeh, M. Kanzari, Structural morphological and optical properties of SnSb2S4 thin films grown by vacuum evaporation method. J. Mater. Sci. Technol. 30(10), 1006–1011 (2014)CrossRefGoogle Scholar
  13. H. von Lilienfeld-Toal, M. Weidenmuller, A. Xhelaj, W. Mantele, A novel approach to non-invasive glucose measurement by mid-infrared spectroscopy: The combination of quantum cascade lasers (QCL) and photoacoustic detection. Vib. Spectrosc. 38(1–2), 209–215 (2005)CrossRefGoogle Scholar
  14. A.I. Lopez-Lorente, M. Sieger, M. Valcarcel, B. Mizaikoff, Infrared attenuated total reflection spectroscopy for the characterization of gold nanoparticles in solution. Anal. Chem. 86(1), 783–789 (2014)CrossRefGoogle Scholar
  15. C. Lu, L. Xingbo, L. Yang, Study of influencing factors on vacuum evaporation film thickness. Appl. Mech. Mater. 536-537, 3716–3720 (2014)Google Scholar
  16. J. Mastrototaro, J. Shin, A. Marcus, G. Sulur, S.C.T. Investigator, The accuracy and efficacy of real-time continuous glucose monitoring sensor in patients with type 1 diabetes. Diabetes Technol The 10(5), 385–390 (2008)CrossRefGoogle Scholar
  17. G.T. Merklin, P.R. Griffiths, Influence of chemical interactions on the surface-enhanced infrared absorption spectrometry of nitrophenols on copper and silver films. Langmuir 13(23), 6159–6163 (1997)CrossRefGoogle Scholar
  18. M. Osawa, Dynamic processes in electrochemical reactions studied by surface-@enhanced infrared absorption spectroscopy (SEIRAS). Bull. Chem. Soc. Jpn. 70(12), 2861–2861 (1997)CrossRefGoogle Scholar
  19. M. Osawa, in Near-Field Optics and Surface Plasmon Polaritons, ed. by S. Kawata. Surface-enhanced infrared absorption (Springer Berlin Heidelberg, Berlin, Heidelberg, 2001), pp. 163–187CrossRefGoogle Scholar
  20. M. Pleitez, H. von Lilienfeld-Toal, W. Mantele, Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers (QCL): Establishing a new approach to non invasive glucose measurement. Spectrochim. Acta A 85(1), 61–65 (2012)CrossRefGoogle Scholar
  21. Y. Raichlin, L. Fel, A. Katzir, Evanescent-wave infrared spectroscopy with flattened fibers as sensing elements. Opt. Lett. 28(23), 2297–2299 (2003)CrossRefGoogle Scholar
  22. Y. Raichlin, D. Avisar, L. Gerber, A. Katzir, Flattened infrared fiber-optic sensors for the analysis of micrograms of insoluble solid particles in solution or in a dry state. Vib. Spectrosc. 73, 67–72 (2014)CrossRefGoogle Scholar
  23. G.P.C. Rao, J. Yang, Preparation of high-capacity substrates from polycrystalline silver chloride for the selective detection of tyrosine by surface-enhanced infrared absorption (SEIRA) measurements. Anal. Bioanal. Chem. 401(9), 2935–2943 (2011)CrossRefGoogle Scholar
  24. K. Rebrin, G.M. Steil, Can interstitial glucose assessment replace blood glucose measurements? Diabetes Technol The 2(3), 461–472 (2000)CrossRefGoogle Scholar
  25. R. Rosipal, N. Kramer, Overview and recent advances in partial least squares. Lect Notes Comput Sc 3940, 34–51 (2006)CrossRefGoogle Scholar
  26. T. Shi, D. Li, G. Li, Y. Zhang, K. Xu, L. Lu, Modeling and measurement of correlation between blood and interstitial glucose changes. Journal of diabetes research 2016, 1 (2016)CrossRefGoogle Scholar
  27. F. Verger, T. Pain, V. Nazabal, C. Boussard-Pledel, B. Bureau, F. Colas, E. Rinnert, K. Boukerma, C. Compere, M. Guilloux-Viry, S. Deputier, A. Perrin, J.P. Guin, Surface enhanced infrared absorption (SEIRA) spectroscopy using gold nanoparticles on As2S3 glass. Sensor Actuat B-Chem 175, 142–148 (2012)CrossRefGoogle Scholar
  28. D.M. Wilson, R.W. Beck, W.V. Tamborlane, M.J. Dontchev, C. Kollman, P. Chase, L.A. Fox, K.J. Ruedy, E. Tsalikian, S.A. Weinzimer, The accuracy of the FreeStyle navigator continuous glucose monitoring system in children with type 1 diabetes. Diabetes Care 30(1), 59–64 (2007)CrossRefGoogle Scholar
  29. H.X. Yu, D.C. Li, R.C. Roberts, K.X. Xu, N.C. Tien, An interstitial fluid transdermal extraction system for continuous glucose monitoring. J Microelectromech S 21(4), 917–925 (2012)CrossRefGoogle Scholar
  30. S.L. Yu, D.C. Li, H. Chong, C.Y. Sun, K.X. Xu, Continuous glucose determination using fiber-based tunable mid-infrared laser spectroscopy. Opt Laser Eng 55, 78–83 (2014a)CrossRefGoogle Scholar
  31. S.L. Yu, D.C. Li, H. Chong, C.Y. Sun, H.X. Yu, K.X. Xu, In vitro glucose measurement using tunable mid-infrared laser spectroscopy combined with fiber-optic sensor. Biomed Opt Express 5(1), 275–286 (2014b)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wenwen Li
    • 1
  • Changyue Sun
    • 1
  • Songlin Yu
    • 2
  • Zhihua Pu
    • 1
  • Penghao Zhang
    • 1
  • Kexin Xu
    • 1
  • Zhenqiang Song
    • 3
    Email author
  • Dachao Li
    • 1
    Email author
  1. 1.State Key Laboratory of Precision Measuring Technology and InstrumentsTianjin UniversityTianjinChina
  2. 2.Temperature LaboratoryTianjin Institute of Metrological Supervision TestingTianjinChina
  3. 3.NHC Key Laboratory of Hormones and Development (Tianjin Medical University) , Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical University Metabolic Diseases Hospital & Tianjin Institute of EndocrinologyTianjinChina

Personalised recommendations