Skip to main content
Log in

Solid-core photonic crystal fiber-based nanolayer glucose sensor

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In this article, a solid-core photonic crystal fiber was developed to examine different concentrations and refractive indices of dissolved glucose in water and blood samples using surface plasmon resonance. A photonic crystal fiber with coated sensor model based on (gold and silver) nanolayer was proposed. The experimental results exhibit a sensitivity of 1943.43 nm/RIU and 1892.18 nm/RIU for samples with glucose concentrations in water ranging from 80 mg/dl to 600 mg/dl when PCF is coated with gold and silver nanofilm, respectively. It also exhibits wavelength sensitivity of 1114.164 nm/RIU and 1012.364 nm/RIU for glucose concentrations in blood serum at range from 89 mg/dl to 611 mg/dl using PCF coated with identical 50 nm thick gold and silver nanofilms, respectively. It is found that the maximum resolution of the proposed PCF was 3.3 × 10–5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. X.C. Yang, Y. Lu, B.L. Liu, J.Q. Yao, Temperature sensor based on photonic crystal fiber filled with liquid and silver nanowires. IEEE Photon. J. 8(3), 6803309 (2016)

    Article  Google Scholar 

  2. M.A. Fakhri, E.T. Salim, R.K. Ibrahim, H.S. Ali, A.S. Azzahrani, R.A. Ismai, S.C.B. Gopinath, A.C. Kadhim, Z.T. Salim, Investigations on device structure and sensing mechanism using gold nanoparticles decorated photonic crystal fiber-based biosensors. Plasmonics (2023). https://doi.org/10.1007/s11468-023-02015-4

    Article  Google Scholar 

  3. S. Asaduzzaman, K. Ahmed, T. Bhuiyan, T. Farah, Hybrid photonic crystal fiber in chemical sensing. Springerplus 5(1), 748 (2016)

    Article  Google Scholar 

  4. M.A. Fakhri, A.A. Alwahib, E.T. Salim, R.A. Ismail, H.A.A.A. Amir, R.K. Ibrahim, S.F.H. Alhasan, F.H. Alsultany, Z.T. Salim, S.C.B. Gopinath, Preparation and characterization of UV-enhanced GaN/ porous Si photodetector using PLA in liquid. Silicon (2023). https://doi.org/10.1007/s12633-023-02528-x

    Article  Google Scholar 

  5. V. Kaur, S. Singh, Performance analysis of multichannel surface plasmon resonance sensor with dual coating of conducting metal oxide. J. Nanophotonics 12(01), 016012 (2018)

    Article  ADS  Google Scholar 

  6. M.A. Fakhri, E.T. Salim, G.M. Sulaiman, S. Albukhaty, H.S. Ali, Z.T. Salim, S.C.B. Gopinath, U. Hashim, Z.T. Al-aqbi, Gold nanowires based on photonic crystal fiber by laser ablation in liquid to improve colon biosensor. Plasmonics (2023). https://doi.org/10.1007/s11468-023-01961-3

    Article  Google Scholar 

  7. T. Zhang, Y. Zheng, C. Wang, Z. Mu, Y. Liu, J. Lin, A review of photonic crystal fiber sensor applications for different physical quantities. Appl. Spectrosc. Rev. 53(6), 486–502 (2018)

    Article  ADS  Google Scholar 

  8. E.T. Salim, M.A. Fakhri, S.M. Tariq, A.S. Azzahrani, R.K. Ibrahim, A.A. Alwahib, S.F.H. Alhasan, A.T. Ramizy, E.Y. Salih, Z.T. Salim, The unclad single-mode fiber-optic sensor simulation for localized surface plasmon resonance sensing based on silver nanoparticles embedded coating. Plasmonics (2023). https://doi.org/10.1007/s11468-023-01949-z

    Article  Google Scholar 

  9. A.A. Rifat, G.A. Mahdiraji, R. Ahmed, D.M. Chow, Y.M. Sua, Y.G. Shee, F.R.M. Adikan, Copper-graphene-based photonic crystal fiber plasmonic biosensor. IEEE Photon. J. 8(1), 1–8 (2016)

    Article  Google Scholar 

  10. M.A. Fakhri, E.T. Salim, S.M. Tariq, R.K. Ibrahim, F.H. Alsultany, A.A. Alwahib, S.F.H. Alhasan, S.C.B. Gopinath, Z.T. Salim, U. Hashim, A gold nanoparticles coated unclad single mode fiber-optic sensor based on localized surface plasmon resonance. Sci. Rep. 13, 5680 (2023)

    Article  ADS  Google Scholar 

  11. V. Kaur, S. Singh, Design of titanium nitride coated PCF-SPR sensor for liquid sensing applications. Opt. Fiber Technol. 48, 159–164 (2019)

    Article  ADS  Google Scholar 

  12. R.A. Ismail, E.T. Salim, M.S. Alwazny, Nanosecond laser ablation of Au@LiNbO3 core-shell nanoparticles in ethanol: properties and application in optoelectronic devices. Plasmonics 18(2), 561–576 (2023)

    Article  Google Scholar 

  13. A.K. Paul, M.A. Mollah, M.Z. Hassan, N. Gomez-Cardona, E. Reyes-Vera, Graphene-coated highly sensitive photonic crystal Fiber surface Plasmon resonance sensor for aqueous solution: design and numerical analysis. Photonics 8(5), 155 (2021)

    Article  Google Scholar 

  14. S. Osamah, A.A. Alwahib, M.A. Fakhri, S.C.B. Gopinath, Study of single and symmetrical D-shaped optical fiber sensor based on gold nanorods. J Opt. 5, 96 (2023)

    Google Scholar 

  15. A.A. Rifat, K. Ahmed, S. Asaduzzaman, B.K. Paul, R. Ahmed, Development of photonic crystal fiber-based gas/chemical sensors. Comput. Photon. Sens. (2019). https://doi.org/10.1007/978-3-319-76556-3_12

    Article  Google Scholar 

  16. N.K. Hassan, F.G. Khalid, A.A. Ekshayesh, O.S. Dahham, M.M. Hussein, Optical investigations of gold nano rods and gold nano rods doped with ZnO nanoparticles for optoelectronic applications. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01120-1

    Article  Google Scholar 

  17. J.L.U. Unjie, Y.L.I. An, Y.A.H. An, Y.I.L. Iu, J.I.G. Ao, D-shaped photonic crystal fiber plasmonic refractive index sensor based on gold grating. Appl. Opt. 57(19), 5268–5272 (2018)

    Article  ADS  Google Scholar 

  18. S.M. Tariq, M.A. Fakhri, Design and simulation of optical fibre based of gold nanoparticles for sensor applications. Int. J. Nanoelectron. Mater. 15, 59–70 (2022)

    Google Scholar 

  19. Q. Liu, S. Wang, H. Mu, Y. Sun, J. Zhao, K. Wang, W. Liu, J. Lv, P. K. Chu, C. Liu, Surface plasmon resonance sensor composed of a D-type photonic crystal fiber with a three-layer coating, J. Opt. Soc. Am. A. 40(7), 1352–1358 (2023).

    Article  ADS  Google Scholar 

  20. M.J. Abd-ALhussain, B.G. Rasheed, M.A. Fakhri, Review on photonic crystal fiber-based nanoparticle for sensing applications. Int. J. Nanoelectron. Mater. 15, 71–79 (2022)

    Google Scholar 

  21. Z. Fan, Surface plasmon resonance refractive index sensor based on photonic crystal fiber covering nano-ring gold film. Opt. Fiber Technol. 50, 194–199 (2019)

    Article  ADS  Google Scholar 

  22. D.A. Resen, M.F. Mohammed, M.A. Fakhri, Review of recent optical bio-sensor based FBG. Int. J. Nanoelectron. Mater. 15, 165–181 (2022)

    Google Scholar 

  23. W.L. Ng, A.A. Rifat, W.R. Wong, G.A. Mahdiraji, F.R.M. Adikan, A novel diamond ring fiber-based surface plasmon resonance sensor. Plasmonics 13(4), 1165–1170 (2018)

    Article  Google Scholar 

  24. T.E. Abdulrahman, R.O. Mahdi, E.T. Salim, Synthesis of Nb2O5 nanoparticle by liquid phase laser ablation method. Int. J. Nanoelectron. Mater. 15, 13–25 (2022)

    Google Scholar 

  25. T. Li, L. Zhu, X. Yang, X. Lou, L. Yu, A refractive index sensor based on h-shaped photonic crystal fibers coated with ag-graphene layers. Sensors (Switzerland) 20(3), 741 (2020). https://doi.org/10.3390/s20030741

    Article  ADS  Google Scholar 

  26. M.S. Muhsin, J.A. Saimon, E.T. Salim, Incorporation of metal nanoparticle to enhance tungsten oxide (WO3) films properties: a mini review. Int. J. Nanoelectron. Mater. 15, 111–118 (2022)

    Google Scholar 

  27. X. Chen, L. Xia, C. Li, Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection. IEEE Photon. J. 10(1), 6800709 (2018)

    Article  Google Scholar 

  28. H.A.A.A. Amir, M.A. Fakhri, A.A. Alwahib, Synthesized of GaN nanostructure using 1064 nm laser wavelength by pulsed laser ablation in liquid. Eng. Technol. J. 40(2), 404–411 (2022)

    Article  Google Scholar 

  29. J.K. Nayak, P. Parhi, R. Jha, Graphene oxide encapsulated gold nanoparticle based stable fibre optic sucrose sensor. Sens. Actuat. B Chem. 221, 835–841 (2015)

    Article  Google Scholar 

  30. N.K. Hassan, M.A. Fakhri, E.T. Salim, Physical properties of pure gold nanoparticles and gold doped ZnO nanoparticles using laser ablation in liquid for sensor applications. Eng. Technol. J. 40(2), 422–427 (2022)

    Article  Google Scholar 

  31. L. Singh, R. Singh, B. Zhang, B.K. Kaushik, S. Kumar, Localized surface plasmon resonance based hetero-core optical fiber sensor structure for the detection of L-cysteine. IEEE Trans. Nanotechnol. 19, 201–208 (2020)

    Article  ADS  Google Scholar 

  32. T.E. Abdulrahman, E.T. Salim, R.O. Mahdi, M.H.A. Wahid, Nb2O5 nano and microspheres fabricated by laser ablation. Adv. Nat. Sci: Nanosci. Nanotechnol. 13, 045006 (2022)

    ADS  Google Scholar 

  33. T. Guo, Fiber grating-assisted surface plasmon resonance for biochemical and electrochemical sensing. J. Light. Technol. 35(16), 3323–3333 (2017)

    Article  ADS  Google Scholar 

  34. S. Osamah, A. A. Alwahib and M. A. Fakhri, D-shape optical fibers based on gold nanoparticles for a different sensors: a review, in AIP Conference Proceedings, 2660, 020135 (2022); https://doi.org/10.1063/5.0107768

  35. M.R. Hasan, M.A. Islam, A.A. Rifat, A single mode porous-core square lattice photonic crystal fiber for THz wave propagation. J. Eur. Opt. Soc. 12, 15 (2016)

    Article  Google Scholar 

  36. S.M. Tariq, M.A. Fakhri, E.T. Salim, U. Hashim, F.H. Alsultany, Design of an unclad single-mode fiber-optic biosensor based on localized surface plasmon resonance by using COMSOL Multiphysics 5.1 finite element method. Appl. Opt. 61(21), 6257–6267 (2022)

    Article  ADS  Google Scholar 

  37. D.J.J. Hu, H.P. Ho, Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications. Adv. Opt. Photon. 9(2), 257 (2017)

    Article  Google Scholar 

  38. M.S. Alwazny, R.A. Ismail, E.T. Salim, Aggregation threshold for Novel Au–LiNbO3 core/shell Nano composite: effect of laser ablation energy fluence. Int. J. Nanoelectron. Mater. 15(3), 223–232 (2022)

    Google Scholar 

  39. K. Tsuruda, M. Fujita, T. Nagatsuma, Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab. Opt. Express. 23, 31977–31990 (2015)

    Article  ADS  Google Scholar 

  40. M.S. Alwazny, R.A. Ismail, E.T. Salim, High-quantum efficiency of Au@LiNbO3 core–shell nano composite as a photodetector by two-step laser ablation in liquid. Appl. Phys. A 128, 500 (2022)

    Article  ADS  Google Scholar 

  41. M.M. Rahman, M.M. Rana, M.S. Anower, M.S. Rahman, A.K. Paul, Design and analysis of photonic crystal fiber-based plasmonic microbiosensor: an external sensing scheme. SN Appl. Sci. 2, 1194 (2020)

    Article  Google Scholar 

  42. A.D. Faisal, W.K. Khalef, E.T. Salim, F.H. Alsultany, M.H.A. Wahid, Conductivity modification of ZnO NRs films via gold coating for temperature sensor application. Key Eng. Mater. 936, 105–114 (2022)

    Article  Google Scholar 

  43. M.M.A. Eid, M.A. Habib, M.S. Anower, A.N.Z. Rashed, Highly sensitive nonlinear photonic crystal fiber based sensor for chemical sensing applications. Microsyst. Technol. 27(3), 1007–1014 (2021)

    Article  Google Scholar 

  44. N.K. Hassan, M.A. Fakhri, A.W. Abdulwahhab, U. Hashim, Preparation of gold nanoparticles doped zinc oxide using reactive pulsed laser ablation in liquid. Key Eng. Mater. 911, 65–76 (2022)

    Article  Google Scholar 

  45. W.Y.A.W. Luo, X.B. Li, S.A.A. Abbasi, S.A. Zhu, H.-P.A. Ho, Analysis of the D-shaped PCF-based SPR sensor using resonance electron relaxation and fourier domain method. Opt. Lasers Eng. 166, 107588 (2023)

    Article  Google Scholar 

  46. S.M. Tariq, M.A. Fakhri, U. Hashim, Fiber optics for sensing applications in a review. Key Eng. Mater. 911, 65–76 (2022)

    Article  Google Scholar 

  47. L. Duan, X. Yang, Y. Lu, J. Yao, Hollow-fiber-based surface plasmon resonance sensor with large refractive index detection range and high linearity. Appl. Opt. 56(36), 9907 (2017)

    Article  ADS  Google Scholar 

  48. H.S. Ali, M.A. Fakhri, Z. Khalifa, Optical and structural properties of the gold nanoparticles ablated by laser ablation in ethanol for biosensors. J. Phys: Conf. Ser. 1795(1), 012065 (2021)

    Google Scholar 

  49. T.S.Y. Feng, W. Zhang, T. Xu, L. Huang, C. Liu, D-shaped photonic crystal fiber sensor based on the surface plasmon resonance effect for refractive index detection. Appl. Opt. 62(16), E83–E91 (2023)

    Article  Google Scholar 

  50. M.A. Hassan, B.M. Al-Nedawe, M.A. Fakhri, Embedded optical fiber link interferometer sensors for snapshot surface inspection using the synthetic wavelength technique,". Appl. Opt. 60(8), 2339–2347 (2021)

    Article  ADS  Google Scholar 

  51. M. De, T.K. Gangopadhyay, V.K. Singh, Prospects of photonic crystal fiber as physical sensor: an overview. Sensors (Switzerland) 19(3), 464 (2019)

    Article  ADS  Google Scholar 

  52. N.K. Hassan, M.A. Fakhri, E.T. Salim, M.A. Hassan, Gold nano particles based optical fibers for a different sensor in a review. Mater. Today Proc. 42, 2769–2772 (2021)

    Article  Google Scholar 

  53. A.A. Rifat, K. Ahmed, S. Asaduzzaman, B.K. Paul, R. Ahmed, Development of photonic crystal fiber based gas/chemical sensors, in Computational Photonic Sensors. ed. by M. Hameed, S. Obayya (Springer, Cham, 2019)

    Google Scholar 

  54. A.D. Faisal, R.A. Ismail, W.K. Khalef, E.T. Salim, Synthesis of ZnO nanorods on a silicon substrate via hydrothermal route for optoelectronic applications. Opt. Quant. Electron. 52, 1–12 (2020)

    Article  Google Scholar 

  55. B.K. Paul, F. Ahmed, M.G. Moctader, K. Ahmed, D. Vigneswaran, Silicon nano crystal filled photonic crystal fiber for high nonlinearity. Opt. Mater. (Amst) 84, 545–549 (2018)

    Article  ADS  Google Scholar 

  56. H.S. Ali, M.A. Fakhri, An overview of Au & Photonic crystal fiber of sensors. Mater. Sci. For. 1002, 282–289 (2020)

    Google Scholar 

  57. E.K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G.K. Robinson, J.V. Oliver, Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J. Quant. Electron. 48(11), 1403–1410 (2012)

    Article  ADS  Google Scholar 

  58. S.A. Adnan, Z.H. Tawfiq, M.A. Fakhri, Gold nanoparticles in liquid based on photonic crystal fiber PCF for sensors application. Defect Diffus. Forum 398, 23–28 (2020)

    Article  Google Scholar 

  59. M.S.A. Gandhi, K. Senthilnathan, P.R. Babu, Q. Li, Visible to near infrared highly sensitive microbiosensor based on surface plasmon polariton with external sensing approach results in physics visible to near infrared highly sensitive microbiosensor based on surface plasmon polariton with external sensing. Res. Phys. 15, 102590 (2019)

    Google Scholar 

  60. H.T. Halboos, E.T. Salim, Silver doped niobium pentoxide nanostructured thin film, optical structural and morphological properties. IOP Conf. Ser. Mater. Sci. Eng. 454(1), 012174 (2018)

    Article  Google Scholar 

  61. H. Yang et al., Highly sensitive graphene-au coated plasmon resonance PCF sensor. Sensors (Switzerland) 21(3), 1–14 (2021). https://doi.org/10.3390/s21030818

    Article  Google Scholar 

  62. M.A. Fakhri, E.T. Salim, M.H.A. Wahid, A.W. Abdulwahhab, Z.T. Salim, U. Hashim, Heat treatment assisted-spin coating for LiNbO3 films preparation: their physical properties. J. Phys. Chem. Solids 131, 180–188 (2019)

    Article  ADS  Google Scholar 

  63. M. N. Sakib and M. S. Anower, Designing and Characterizing a Multi-core PCF SPR Biosensor, in 3rd IEEE International Conferences Telecommunication Photonics, ICTP 2019, 1–4 (2019)

  64. M.A. Fakhri, E.T. Salim, M.H.A. Wahid, A.W. Abdulwahhab, U. Hashim, Z.T. Salim, Efficiency enhancement of optical strip waveguide by the effect of heat treatment. Optik 180, 768–774 (2019)

    Article  ADS  Google Scholar 

  65. N.H.H.M. Al Mahfuz, Md.. A. Hossain, E. Haque, Y. Namihira, F. Ahmed, A bimetallic-coated, low propagation loss, photonic crystal fiber based plasmonic refractive index sensor Mohammad. Sensors 19(17), 3794 (2019)

    Article  ADS  Google Scholar 

  66. E.T. Salim, J.A. Saimon, M.K. Abood, M.A. Fakhri, Effect of ammonium concentration on structural, optical and morphological properties of H-Nb2O5 thin films-A novel study. Mater. Res. Express 6(4), 046420 (2019)

    Article  ADS  Google Scholar 

  67. M.K. Abood, M.H.A. Wahid, J.A. Saimon, E.T. Salim, Physical properties of Nb2O5 thin films prepared at 12M ammonium concentration. Int. J. Nanoelectron. Mater. 11, 237–244 (2018)

    Google Scholar 

  68. M.A. Fakhri, E.T. Salim, A.W. Abdulwahhab, U. Hashim, Z.T. Salim, Optical properties of micro and nano LiNbO3 thin film prepared by spin coating. Opt. Laser Technol. 103, 226–232 (2018)

    Article  ADS  Google Scholar 

  69. Z.H. Tawfiq, M.A. Fakhri, S.A. Adnan, Photonic crystal fibres PCF for different sensors in review. IOP Conf. Ser. Mater. Sci. Eng. 454(1), 012173 (2018). https://doi.org/10.1088/1757-899X/454/1/012173

    Article  Google Scholar 

  70. M.A. Fakhri, E.T. Salim, M.H.A. Wahid, U. Hashim, Z.T. Salim, Optical investigations and optical constant of nano lithium niobate deposited by spray pyrolysis technique with injection of Li2CO3 and Nb2O5 as raw materials. J. Mater. Sci. Mater. Electron. 29(11), 9200–9208 (2018)

    Article  Google Scholar 

  71. M.K. Abood, E.T. Salim, J.A. Saimon, Niobium pentoxide thin film prepared using simple colloidal suspension for optoelectronic application. Int. J. Nanoelectron. Mater. 11(2), 127–134 (2018)

    Google Scholar 

  72. S.A. Naayi, A.I. Hassan, E.T. Salim, FTIR and X-ray diffraction analysis of Al2O3 nanostructured thin film prepared at low temperature using spray pyrolysis method. Int. J. Nanoelectron. Mater. 11, 1–6 (2018)

    Google Scholar 

  73. M.K. Abood, E.T. Salim, J.A. Saimon, Impact of substrate type on the microstructure of H-Nb2O5 thin film at room temperature. Int. J. Nanoelectron. Mater. 11, 55–64 (2018)

    Google Scholar 

  74. E.T. Salim, Surface morphology and X-ray diffraction analysis for silicon nanocrystal-based heterostructures. Surf. Rev. Lett. 20(05), 1350046 (2013)

    Article  ADS  Google Scholar 

  75. M.K. Abood, M. Halim, A. Wahid, E.T. Salim, J. Admon, Niobium Pentoxide thin films employ simple colloidal suspension at low preparation temperature. Eur. Phys. J. Conf. 162(12), 01058 (2017)

    Article  Google Scholar 

  76. R.A. Ismail, E.T. Salim, W.K. Hamoudi, Characterization of nanostructured hydroxyapatite prepared by Nd:YAG laser deposition. Mater. Sci. Eng. C 33(1), 47–52 (2013)

    Article  Google Scholar 

  77. J. Zhong, S. Liu, T. Zou, W. Yan, P. Chen, B. Liu, Z. Sun, Y. Wang, High-sensitivity optical fiber-based glucose sensor using helical intermediate-period fiber gratin. Sensors 22(18), 6824 (2022)

    Article  ADS  Google Scholar 

  78. C.I.A. Ferreira, M.S. Ferreira, L. Pinto, C.I.A. Ferreira, M.S. Ferreira, Optical fiber tip sensor for the measurement of glucose aqueous solutions. IEEE Photon. J. 10(5), 6803609 (2018)

    Google Scholar 

  79. M.Y. Azab, M.F.O. Hameed, G.A. Mahdiraji, F.R.M. Adikan, S.S.A. Obayya, Experimental and numerical characterization of a D-shaped PCF refractive index sensor. Opt. Quantum Electron. 54(12), 1–14 (2022)

    Article  Google Scholar 

  80. F.F. Abbas, S.S. Ahmed, Photonic crystal fiber pollution sensor based on surface plasmon resonance. Iraqi J. Sci. 64(2), 658–667 (2023)

    Article  Google Scholar 

  81. F.R.M.A.A.A. Rifat, G.A. Mahdiraji, Y.G. Shee, Md.J. Shawon, A novel photonic crystal fiber biosensor using surface plasmon resonance. Procedia Eng. 140, 1–7 (2016)

    Article  Google Scholar 

  82. A.I. Mahmood, S.A. Kadhim, N.F. Mohammed, I.A. Naseef, Simulation design of silver nanoparticle coated photonic crystal fiber sensor based on surface plasmon resonance. Exp. Theor. Nanotechnol. 5, 57–64 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makram A. Fakhri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-ALhussain, M.J., Rasheed, B.G. & Fakhri, M.A. Solid-core photonic crystal fiber-based nanolayer glucose sensor. J Opt (2023). https://doi.org/10.1007/s12596-023-01411-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01411-7

Keywords

Navigation