Advertisement

Biogerontology

, Volume 17, Issue 1, pp 159–176 | Cite as

Compartmentalization of immunosenescence: a deeper look at the mucosa

  • Serena Martelli
  • Sylvia L. F. Pender
  • Anis LarbiEmail author
Review Article

Abstract

Developments in medical care and living conditions led to an astonishing increase in life-span perspective and subsequently a rise in the old population. This can be seen as a success for public health policies but it also challenges society to adapt, in order to cope with the potentially overwhelming cost for the healthcare system. A fast-growing number of older people lose their ability to live independently because of diseases and disabilities, frailty or cognitive impairment. Many require long-term care, including home-based nursing, communities and hospital-based care. Immunosenescence, an age-related deterioration in immune functions, is considered a major contributory factor for the higher prevalence and severity of infectious diseases and the poor efficacy of vaccination in the elderly. When compared with systemic immunosenescence, alterations in the mucosal immune system with age are less well understood. For this reason, this area deserves more extensive and intensive research and support. In this article, we provide an overview of age-associated changes occurring in systemic immunity and discuss the distinct features of mucosal immunosenescence.

Keywords

Immunosenescence Mucosal immunity sIgA Microbiota 

References

  1. Agrawal A, Agrawal S, Cao JN, Su HF, Osann K, Gupta S (2007) Altered innate immune functioning of dendritic cells in elderly humans: a role of phosphoinositide 3-kinase-signaling pathway. J Immunol 178:6912–6922PubMedCrossRefGoogle Scholar
  2. Arranz E, O’Mahony S, Barton JR, Ferguson A (1992) Immunosenescence and mucosal immunity: significant effects of old age on secretory IgA concentrations and intraepithelial lymphocyte counts. Gut 33:882–886PubMedCentralPubMedCrossRefGoogle Scholar
  3. Aspinall R, Andrew D (2000) Thymic involution in aging. J Clin Immunol 20:250–256PubMedCrossRefGoogle Scholar
  4. Bauer JM, Kaiser MJ, Sieber CC (2010) Evaluation of nutritional status in older persons: nutritional screening and assessment. Current opinion in clinical nutrition and metabolic care 13:8–13PubMedCrossRefGoogle Scholar
  5. Beyer WEP, Palache AM, Baljet M, Masurel N (1989) Antibody induction by influenza vaccines in the elderly—a review of the literature. Vaccine 7:385–394PubMedCrossRefGoogle Scholar
  6. Bjorkstrom NK, Riese P, Heuts F, Andersson S, Fauriat C, Ivarsson MA, Bjorklund AT, Flodstrom-Tullberg M, Michaelsson J, Rottenberg ME et al (2010) Expression patterns of NKG2A, KIR, and CD57 define a process of CD56(dim) NK-cell differentiation uncoupled from NK-cell education. Blood 116:3853–3864PubMedCrossRefGoogle Scholar
  7. Borrego F, Alonso MC, Galiani MD, Carracedo J, Ramirez R, Ostos B, Pena J, Solana R (1999) NK phenotypic markers and IL2 response in NK cells from elderly people. Exp Gerontol 34:253–265PubMedCrossRefGoogle Scholar
  8. Brandtzaeg P, Pabst R (2005) Let’s go mucosal: communication on slippery ground (vol 25, p 570, 2004). Trends Immunol 26:12Google Scholar
  9. Butcher SK, Chahal H, Nayak L, Sinclair A, Henriquez NV, Sapey E, O’Mahony D, Lord JM (2001) Senescence in innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J Leukoc Biol 70:881–886PubMedGoogle Scholar
  10. Camous X, Pera A, Solana R, Larbi A (2012) NK cells in healthy aging and age-associated diseases. J Biomed Biotechnol 2012:195956PubMedCentralPubMedCrossRefGoogle Scholar
  11. Cannizzo ES, Clement CC, Sahu R, Follo C, Santambrogio L (2011) Oxidative stress, inflamm-aging and immunosenescence. J Proteomics 74:2313–2323PubMedCrossRefGoogle Scholar
  12. Cerutti A (2008) The regulation of IgA class switching. Nat Rev Immunol 8:421–434PubMedCentralPubMedCrossRefGoogle Scholar
  13. Chatta GS, Andrews RG, Rodger E, Schrag M, Hammond WP, Dale DC (1993) Hematopoietic progenitors and aging: alterations in granulocytic precursors and responsiveness to recombinant human G-CSF, GM-CSF, and IL-3. J Gerontol 48:M207–M212PubMedCrossRefGoogle Scholar
  14. Chen K, Cerutti A (2010) Vaccination strategies to promote mucosal antibody responses. Immunity 33:479–491PubMedCentralPubMedCrossRefGoogle Scholar
  15. Cheroutre H, Lambolez F, Mucida D (2011) The light and dark sides of intestinal intraepithelial lymphocytes. Nat Rev Immunol 11:445–456PubMedCentralPubMedCrossRefGoogle Scholar
  16. Chong Y, Ikematsu H, Yamaji K, Nishimura M, Nabeshima S, Kashiwagi S, Hayashi J (2005) CD27(+) (memory) B cell decrease and apoptosis-resistant CD27(-) (naive) B cell increase in aged humans: implications for age-related peripheral B cell developmental disturbances. Int Immunol 17:383–390PubMedCrossRefGoogle Scholar
  17. Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, Reading NC, Villablanca EJ, Wang S, Mora JR et al (2012) Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149:1578–1593PubMedCentralPubMedCrossRefGoogle Scholar
  18. Colonna-Romano G, Bulati M, Aquino E, Scialabba G, Candore G, Lio D, Motta M, Malaguarnera M, Caruso C (2003) B cells in the aged: CD27, CD5, and CD40 expression. Mech Ageing Dev 124:389–393PubMedCrossRefGoogle Scholar
  19. Colonna-Romano G, Bulati M, Aquino A, Vitello S, Lio D, Candore G, Caruso C (2008) B cell immunosenescence in the elderly and in centenarians. Rejuvenation research 11:433–439PubMedCrossRefGoogle Scholar
  20. Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118PubMedCentralPubMedCrossRefGoogle Scholar
  21. Daniels CK, Schmucker DL, Bazin H, Jones AL (1988) Immunoglobulin A receptor of rat small intestinal enterocytes is unaffected by aging. Gastroenterology 94:1432–1440PubMedGoogle Scholar
  22. Davila DR, Edwards CK, Arkins S, Simon J, Kelley KW (1990) Interferon-gamma-induced priming for secretion of superoxide anion and tumor necrosis factor-alpha declines in macrophages from aged Rats. Faseb J 4:2906–2911PubMedGoogle Scholar
  23. Del Giudice G, Weinberger B, Grubeck-Loebenstein B (2015) Vaccines for the elderly. Gerontology 61:203–210PubMedCrossRefGoogle Scholar
  24. Ebersole JL, Smith DJ, Taubman MA (1985) Secretory immune-responses in aging rats. 1. Immunoglobulin Levels. Immunology 56:345–350PubMedGoogle Scholar
  25. Ershler WB (1993) The influence of an aging immune-system on cancer incidence and progression. J Gerontol 48:B3–B7PubMedCrossRefGoogle Scholar
  26. Farache J, Koren I, Milo I, Gurevich I, Kim KW, Zigmond E, Furtado GC, Lira SA, Shakhar G (2013) Luminal bacteria recruit CD103(+) dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity 38:581–595PubMedCentralPubMedCrossRefGoogle Scholar
  27. Fayad R, Zhang H, Quinn D, Huang Y, Qiao L (2004) Oral administration with papillomavirus pseudovirus encoding IL-2 fully restores mucosal and systemic immune responses to vaccinations in aged mice. J Immunol 173:2692–2698PubMedCrossRefGoogle Scholar
  28. Franceschi C, Bonafe M (2003) Centenarians as a model for healthy aging. Biochem Soc T 31:457–461CrossRefGoogle Scholar
  29. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging—an evolutionary perspective on immunosenescence. Ann Ny Acad Sci 908:244–254PubMedCrossRefGoogle Scholar
  30. Franceschi C, Motta L, Motta M, Malaguarnera M, Capri M, Vasto S, Candore G, Caruso C (2008) The extreme longevity: the state of the art in Italy. Exp Gerontol 43:45–52PubMedCrossRefGoogle Scholar
  31. Frasca D, Landin AM, Lechner SC, Ryan JG, Schwartz R, Riley RL, Blomberg BB (2008) Aging down-regulates the transcription factor E2A, activation-induced cytidine deaminase, and Ig class switch in human B cells. J Immunol 180:5283–5290PubMedCrossRefGoogle Scholar
  32. Fujihashi K, Kiyono H (2009) Mucosal immunosenescence: new developments and vaccines to control infectious diseases. Trends Immunol 30:334–343PubMedCrossRefGoogle Scholar
  33. Fujihashi K, McGhee JR (2004) Mucosal immunity and tolerance in the elderly. Mech Ageing Dev 125:889–898PubMedCrossRefGoogle Scholar
  34. Fukuiwa T, Sekine S, Kobayashi R, Suzuki H, Kataoka K, Gilbert RS, Kurono Y, Boyaka PN, Krieg AM, McGhee JR, Fujihashi K (2008) A combination of Flt3 ligand cDNA and CpG ODN as nasal adjuvant elicits NALT dendritic cells for prolonged mucosal immunity. Vaccine 26:4849–4859PubMedCentralPubMedCrossRefGoogle Scholar
  35. Fukuyama S, Hiroi T, Yokota Y, Rennert PD, Yanagita M, Kinoshita N, Terawaki S, Shikina T, Yamamoto M, Kurono Y, Kiyono H (2002) Initiation of NALT organogenesis is independent of the IL-7R, LTbetaR, and NIK signaling pathways but requires the Id2 gene and CD3(−)CD4(+)CD45(+) cells. Immunity 17:31–40PubMedCrossRefGoogle Scholar
  36. Fulop T, Fouquet C, Allaire P, Perrin N, Lacombe G, Stankova J, RolaPleszczynski M, Gagne D, Wagner JR, Khalil A, Dupuis G (1997) Changes in apoptosis of human polymorphonuclear granulocytes with aging. Mech Ageing Dev 96:15–34PubMedCrossRefGoogle Scholar
  37. Gayoso I, Sanchez-Correa B, Campos C, Alonso C, Pera A, Casado JG, Morgado S, Tarazona R, Solana R (2011) Immunosenescence of human natural killer cells. J Innate Immun 3:337–343PubMedCrossRefGoogle Scholar
  38. Ginaldi L, Loreto MF, Corsi MP, Modesti M, De Martinis M (2001) Immunosenescence and infectious diseases. Microbes Infect 3:851–857PubMedCrossRefGoogle Scholar
  39. Gomez CR, Boehmer ED, Kovacs EJ (2005) The aging innate immune system. Curr Opin Immunol 17:457–462PubMedCrossRefGoogle Scholar
  40. Goronzy JJ, Weyand CM (2012) Immune aging and autoimmunity. Cell Mol Life Sci 69:1615–1623PubMedCentralPubMedCrossRefGoogle Scholar
  41. Grolleau-Julius A, Harning EK, Abernathy LM, Yung RL (2008) Impaired dendritic cell function in aging leads to defective antitumor immunity. Cancer Res 68:6341–6349PubMedCentralPubMedCrossRefGoogle Scholar
  42. Guerrettaz LM, Johnson SA, Cambier JC (2008) Acquired hematopoietic stem cell defects determine B-cell repertoire changes associated with aging. Proc Natl Acad Sci U S A 105:11898–11902PubMedCentralPubMedCrossRefGoogle Scholar
  43. Gupta S, Su H, Bi R, Agrawal S, Gollapudi S (2005) Life and death of lymphocytes: a role in immunesenescence. Immunity & ageing : I & A 2:12CrossRefGoogle Scholar
  44. Hagiwara Y, McGhee JR, Fujihashi K, Kobayashi R, Yoshino N, Kataoka K, Etani Y, Kweon MN, Tamura S, Kurata T et al (2003) Protective mucosal immunity in aging is associated with functional CD4+ T cells in nasopharyngeal-associated lymphoreticular tissue. J Immunol 170:1754–1762PubMedCrossRefGoogle Scholar
  45. Haq K, McElhaney JE (2014) Immunosenescence: influenza vaccination and the elderly. Curr Opin Immunol 29:38–42PubMedCrossRefGoogle Scholar
  46. Harrison OJ, Powrie FM (2013) Regulatory T cells and immune tolerance in the intestine. Cold Spring Harbor Perspect Biol 5:a018341CrossRefGoogle Scholar
  47. Hayhoe RP, Henson SM, Akbar AN, Palmer DB (2010) Variation of human natural killer cell phenotypes with age: identification of a unique KLRG1-negative subset. Hum Immunol 71:676–681PubMedCrossRefGoogle Scholar
  48. Haynes L, Eaton SM, Burns EM, Randall TD, Swain SL (2003) CD4 T cell memory derived from young naive cells functions well into old age, but memory generated from aged naive cells functions poorly. P Natl Acad Sci USA 100:15053–15058CrossRefGoogle Scholar
  49. Herrero C, Sebastian C, Marques L, Comalada M, Xaus J, Valledor AF, Lloberas J, Celada A (2002) Immunosenescence of macrophages: reduced MHC class II gene expression. Exp Gerontol 37:389–394PubMedCrossRefGoogle Scholar
  50. Holmen N, Lundgren A, Lundin S, Bergin AM, Rudin A, Sjovall H, Ohman L (2006) Functional CD4+ CD25high regulatory T cells are enriched in the colonic mucosa of patients with active ulcerative colitis and increase with disease activity. Inflamm Bowel Dis 12:447–456PubMedCrossRefGoogle Scholar
  51. Ismail AS, Severson KM, Vaishnava S, Behrendt CL, Yu X, Benjamin JL, Ruhn KA, Hou B, DeFranco AL, Yarovinsky F, Hooper LV (2011) Gammadelta intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface. Proc Natl Acad Sci U S A 108:8743–8748PubMedCentralPubMedCrossRefGoogle Scholar
  52. Jafarzadeh A, Sadeghi M, Karam GA, Vazirinejad R (2010) Salivary IgA and IgE levels in healthy subjects: relation to age and gender. Brazilian oral research 24:21–27PubMedCrossRefGoogle Scholar
  53. Janeway CA (1988) Frontiers of the Immune-System. Nature 333:804–806PubMedCrossRefGoogle Scholar
  54. Jarry A, Cerf-Bensussan N, Brousse N, Selz F, Guy-Grand D (1990) Subsets of CD3 + (T cell receptor alpha/beta or gamma/delta) and CD3- lymphocytes isolated from normal human gut epithelium display phenotypical features different from their counterparts in peripheral blood. Eur J Immunol 20:1097–1103PubMedCrossRefGoogle Scholar
  55. Johnson KM, Owen K, Witte PL (2002) Aging and developmental transitions in the B cell lineage. Int Immunol 14:1313–1323PubMedCrossRefGoogle Scholar
  56. Jones DS, Podolsky SH, Greene JA (2012) 200th anniversary article the burden of disease and the changing task of medicine. New Engl J Med 366:2333–2338PubMedCrossRefGoogle Scholar
  57. Jurk D, Wilson C, Passos JF, Oakley F, Correia-Melo C, Greaves L, Saretzki G, Fox C, Lawless C, Anderson R, Hewitt G, Pender SL, Fullard N, Nelson G, Mann J, van de Sluis B, Mann DA, von Zglinicki T (2014) Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun 24(2):4172Google Scholar
  58. Kelly D, Campbell JI, King TP, Grant G, Jansson EA, Coutts AGP, Pettersson S, Conway S (2004) Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat Immunol 5:104–112PubMedCrossRefGoogle Scholar
  59. Kim SH, Seo KW, Kim J, Lee KY, Jang YS (2010) The M cell-targeting ligand promotes antigen delivery and induces antigen-specific immune responses in mucosal vaccination. J Immunol 185:5787–5795PubMedCrossRefGoogle Scholar
  60. Kiyono, H. (2008). The mucosal immune system, 5th edn (Lippincott Williams & Wilkins)Google Scholar
  61. Kobayashi A, Donaldson DS, Erridge C, Kanaya T, Williams IR, Ohno H, Mahajan A, Mabbott NA (2013) The functional maturation of M cells is dramatically reduced in the Peyer’s patches of aged mice. Mucosal Immunol 6:1027–1037PubMedCentralPubMedCrossRefGoogle Scholar
  62. Koga T, McGhee JR, Kato H, Kato R, Kiyono H, Fujihashi K (2000) Evidence for early aging in the mucosal immune system. J Immunol 165:5352–5359PubMedCrossRefGoogle Scholar
  63. Kogut I, Scholz JL, Cancro MP, Cambier JC (2012) B cell maintenance and function in aging. Semin Immunol 24:342–349PubMedCrossRefGoogle Scholar
  64. Kohut ML, Senchina DS, Madden KS, Martin AE, Felten DL, Moynihan JA (2004) Age effects on macrophage function vary by tissue site, nature of stimulant, and exercise behavior. Exp Gerontol 39:1347–1360PubMedCrossRefGoogle Scholar
  65. Kovacs EJ, Palmer JL, Fortin CF, Fulop T Jr, Goldstein DR, Linton PJ (2009) Aging and innate immunity in the mouse: impact of intrinsic and extrinsic factors. Trends Immunol 30:319–324PubMedCentralPubMedCrossRefGoogle Scholar
  66. Krone CL, Trzcinski K, Zborowski T, Sanders EA, Bogaert D (2013) Impaired innate mucosal immunity in aged mice permits prolonged Streptococcus pneumoniae colonization. Infect Immun 81:4615–4625PubMedCentralPubMedCrossRefGoogle Scholar
  67. Kurashima Y, Kunisawa J, Kiyono H (2008) Applicable strategies for the mucosal immune system in the regulation of allergic diseases. Allergy 57:87–94PubMedGoogle Scholar
  68. Lanier LL (2014) Of snowflakes and natural killer cell subsets. Nat Biotechnol 32:140–142PubMedCrossRefGoogle Scholar
  69. Lanna A, Henson SM, Escors D, Akbar AN (2014) The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB 1 drives the senescence of human T cells. Nat Immunol 15:965–972PubMedCentralPubMedCrossRefGoogle Scholar
  70. Latthe M, Terry L, MacDonald TT (1994) High frequency of CD8 alpha alpha homodimer-bearing T cells in human fetal intestine. Eur J Immunol 24:1703–1705PubMedCrossRefGoogle Scholar
  71. Le Garff-Tavernier M, Beziat V, Decocq J, Siguret V, Gandjbakhch F, Pautas E, Debre P, Merle-Beral H, Vieillard V (2010) Human NK cells display major phenotypic and functional changes over the life span. Aging Cell 9:527–535PubMedCrossRefGoogle Scholar
  72. Ligthart GJ, Corberand JX, Geertzen HG, Meinders AE, Knook DL, Hijmans W (1990) Necessity of the assessment of health status in human immunogerontological studies: evaluation of the SENIEUR protocol. Mech Ageing Dev 55:89–105PubMedCrossRefGoogle Scholar
  73. Lin M, Du L, Brandtzaeg P, Pan-Hammarstrom Q (2014) IgA subclass switch recombination in human mucosal and systemic immune compartments. Mucosal Immunol 7:511–520PubMedCrossRefGoogle Scholar
  74. Lloberas J, Celada A (2002) Effect of aging on macrophage function. Exp Gerontol 37:1325–1331PubMedCrossRefGoogle Scholar
  75. Lopez-Verges S, Milush JM, Pandey S, York VA, Arakawa-Hoyt J, Pircher H, Norris PJ, Nixon DF, Lanier LL (2010) CD57 defines a functionally distinct population of mature NK cells in the human CD56(dim)CD16(+) NK-cell subset. Blood 116:3865–3874PubMedCentralPubMedCrossRefGoogle Scholar
  76. Lung TL, Saurwein-Teissl M, Parson W, Schonitzer D, Grubeck-Loebenstein B (2000) Unimpaired dendritic cells call be derived from monocytes in old age and can mobilize residual function in senescent T cells. Vaccine 18:1606–1612PubMedCrossRefGoogle Scholar
  77. Mabbott NA, Kobayashi A, Sehgal A, Bradford BM, Pattison M, Donaldson DS (2015) Aging and the mucosal immune system in the intestine. Biogerontology 16:133–145PubMedCrossRefGoogle Scholar
  78. MacDonald TT, Monteleone I, Fantini MC, Monteleone G (2011) Regulation of homeostasis and inflammation in the intestine. Gastroenterology 140:1768–1775PubMedCrossRefGoogle Scholar
  79. Macpherson AJ, Mccoy KD, Johansen FE, Brandtzaeg P (2008) The immune geography of IgA induction and function. Mucosal Immunol 1:11–22PubMedCrossRefGoogle Scholar
  80. Mariani E, Meneghetti A, Formentini I, Neri S, Cattini L, Ravaglia G, Forti P, Facchini A (2003) Telomere length and telomerase activity: effect of ageing on human NK cells. Mech Ageing Dev 124:403–408PubMedCrossRefGoogle Scholar
  81. Markofski MM, Carrillo AE, Timmerman KL, Jennings K, Coen PM, Pence BD, Flynn MG (2014) Exercise training modifies ghrelin and adiponectin concentrations and is related to inflammation in older adults. J Gerontol 69:675–681CrossRefGoogle Scholar
  82. Matsunaga H, Hokari R, Kurihara C, Okada Y, Takebayashi K, Okudaira K, Watanabe C, Komoto S, Nakamura M, Tsuzuki Y et al (2009) Omega-3 polyunsaturated fatty acids ameliorate the severity of ileitis in the senescence accelerated mice (SAM)P1/Yit mice model. Clin Exp Immunol 158:325–333PubMedCentralPubMedCrossRefGoogle Scholar
  83. Maul J, Loddenkemper C, Mundt P, Berg E, Giese T, Stallmach A, Zeitz M, Duchmann R (2005) Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology 128:1868–1878PubMedCrossRefGoogle Scholar
  84. McMurchy AN, Di Nunzio S, Roncarolo MG, Bacchetta R, Levings MK (2009) Molecular regulation of cellular immunity by FOXP3. Adv Exp Med Biol 665:30–46PubMedCrossRefGoogle Scholar
  85. Monteleone G, Holloway J, Salvati VM, Pender SLF, Fairclough PD, Croft N, MacDonald TT (2003) Activated STAT4 and a functional role for IL-12 in human Peyer’s patches. J Immunol 170:300–307PubMedCrossRefGoogle Scholar
  86. Mora JR, von Andrian UH (2008) Differentiation and homing of IgA-secreting cells. Mucosal Immunol 1:96–109PubMedCrossRefGoogle Scholar
  87. Moretto MM, Lawlor EM, Khan IA (2008) Aging mice exhibit a functional defect in mucosal dendritic cell response against an intracellular pathogen. J Immunol 181:7977–7984PubMedCentralPubMedCrossRefGoogle Scholar
  88. Nyugen J, Agrawal S, Gollapudi S, Gupta S (2010) Impaired functions of peripheral blood monocyte subpopulations in aged humans. J Clin Immunol 30:806–813PubMedCentralPubMedCrossRefGoogle Scholar
  89. Ogata K, An E, Shioi Y, Nakamura K, Luo S, Yokose N, Minami S, Dan K (2001) Association between natural killer cell activity and infection in immunologically normal elderly people. Clin Exp Immunol 124:392–397PubMedCentralPubMedCrossRefGoogle Scholar
  90. Pae M, Meydani SN, Wu D (2012) The role of nutrition in enhancing immunity in aging. Aging Dis 3:91–129PubMedCentralPubMedGoogle Scholar
  91. Parham, P. (2015). The immune system (Garland Science)Google Scholar
  92. Park HJ, Ferko B, Byun YH, Song JH, Han GY, Roethl E, Egorov A, Muster T, Seong B, Kweon MN et al (2012) Sublingual immunization with a live attenuated influenza a virus lacking the nonstructural protein 1 induces broad protective immunity in mice. PLoS ONE 7:e39921PubMedCentralPubMedCrossRefGoogle Scholar
  93. Pawelec G (1999) Immunosenescence: impact in the young as well as the old? Mech Ageing Dev 108:1–7PubMedCrossRefGoogle Scholar
  94. Pawelec G (2012) Hallmarks of human “immunosenescence”: adaptation or dysregulation? Immunity & ageing : I & A 9:15CrossRefGoogle Scholar
  95. Pender SLF, Chance V, Whiting CV, Buckley M, Edwards M, Pettipher R, MacDonald TT (2005) Systemic administration of the chemokine macrophage inflammatory protein 1α exacerbates inflammatory bowel disease in a mouse model. Gut 54:1114–1120PubMedCentralPubMedCrossRefGoogle Scholar
  96. Plackett TP, Boehmer ED, Faunce DE, Kovacs EJ (2004) Aging and innate immune cells. J Leukoc Biol 76:291–299PubMedCrossRefGoogle Scholar
  97. Plowden J, Renshaw-Hoelscher M, Engleman C, Katz J, Sambhara S (2004a) Innate immunity in aging: impact on macrophage function. Aging Cell 3:161–167PubMedCrossRefGoogle Scholar
  98. Plowden J, Renshaw-Hoelscher M, Gangappa S, Engleman C, Katz JM, Sambhara S (2004b) Impaired antigen-induced CD8 + T cell clonal expansion in aging is due to defects in antigen presenting cell function. Cell Immunol 229:86–92PubMedCrossRefGoogle Scholar
  99. Procaccini C, Pucino V, De Rosa V, Marone G, Matarese G (2014) Neuro-endocrine networks controlling immune system in health and disease. Front Immunol 5:143PubMedCentralPubMedCrossRefGoogle Scholar
  100. Renshaw M, Rockwell J, Engleman C, Gewirtz A, Katz J, Sambhara S (2002) Cutting edge: impaired toll-like receptor expression and function in aging. J Immunol 169:4697–4701PubMedCrossRefGoogle Scholar
  101. Rich, R.T. (2008). Host defenses at mucosal surfaces, 3rd edn (Mosby Elsevier)Google Scholar
  102. Saffrey MJ (2014) Aging of the mammalian gastrointestinal tract: a complex organ system. Age 36:9603PubMedCentralPubMedCrossRefGoogle Scholar
  103. Sage PT, Tan CL, Freeman GJ, Haigis M, Sharpe AH (2015) Defective TFH cell function and increased TFR cells contribute to defective antibody production in aging. Cell reports 12:163–171PubMedCrossRefGoogle Scholar
  104. Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T (2008) Activation of innate immunity system during aging: NF-kappa B signaling is the molecular culprit of inflamm-aging. Ageing Res Rev 7:83–105PubMedCrossRefGoogle Scholar
  105. Salzman NH (2011) Microbiota-immune system interaction: an uneasy alliance. Curr Opin Microbiol 14:99–105PubMedCentralPubMedCrossRefGoogle Scholar
  106. Sathaliyawala T, Kubota M, Yudanin N, Turner D, Camp P, Thome JJ, Bickham KL, Lerner H, Goldstein M, Sykes M et al (2013) Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38:187–197PubMedCentralPubMedCrossRefGoogle Scholar
  107. Sato S, Kiyono H, Fujihashi K (2015) Mucosal immunosenescence in the gastrointestinal tract: a mini-review. Gerontology 61:336–342PubMedCentralPubMedCrossRefGoogle Scholar
  108. Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, Waller A, Mende DR, Kultima JR, Martin J et al (2013) Genomic variation landscape of the human gut microbiome. Nature 493:45–50PubMedCentralPubMedCrossRefGoogle Scholar
  109. Schmucker DL, Daniels CK, Wang RK, Smith K (1988) Mucosal immune-response to cholera-toxin in aging rats. 1. Antibody and antibody-containing cell response. Immunology 64:691–695PubMedCentralPubMedGoogle Scholar
  110. Schmucker DL, Heyworth MF, Owen RL, Daniels CK (1996) Impact of aging on gastrointestinal mucosal immunity. Digest Dis Sci 41:1183–1193PubMedCrossRefGoogle Scholar
  111. Schmucker DL, Owen TM, Issekutz TB, Gonzales L, Wang RK (2002) Expression of lymphocyte homing receptors alpha4beta7 and MAdCAM-l in young and old rats. Exp Gerontol 37:1089–1095PubMedCrossRefGoogle Scholar
  112. Schmucker DL, Owen RL, Outenreath R, Thoreux K (2003) Basis for the age-related decline in intestinal mucosal immunity. Clin Dev Immunol 10:167–172PubMedCentralPubMedCrossRefGoogle Scholar
  113. Seo KY, Han SJ, Cha HR, Seo SU, Song JH, Chung SH, Kweon MN (2010) Eye mucosa: an efficient vaccine delivery route for inducing protective immunity. J Immunol 185:3610–3619PubMedCrossRefGoogle Scholar
  114. Serriari NE, Eoche M, Lamotte L, Lion J, Fumery M, Marcelo P, Chatelain D, Barre A, Nguyen-Khac E, Lantz O et al (2014) Innate mucosal-associated invariant T (MAIT) cells are activated in inflammatory bowel diseases. Clin Exp Immunol 176:266–274PubMedCentralPubMedCrossRefGoogle Scholar
  115. Shanley DP, Aw D, Manley NR, Palmer DB (2009) An evolutionary perspective on the mechanisms of immunosenescence. Trends Immunol 30:374–381PubMedCrossRefGoogle Scholar
  116. Shaw AC, Joshi S, Greenwood H, Panda A, Lord JM (2010) Aging of the innate immune system. Curr Opin Immunol 22:507–513PubMedCentralPubMedCrossRefGoogle Scholar
  117. Sheridan BS, Lefrancois L (2010) Intraepithelial lymphocytes: to serve and protect. Curr Gastroenterol Rep 12:513–521PubMedCentralPubMedCrossRefGoogle Scholar
  118. Sheridan BS, Lefrancois L (2011) Regional and mucosal memory T cells. Nat Immunol 12:485–491PubMedCentralPubMedCrossRefGoogle Scholar
  119. Shi Y, Yamazaki T, Okubo Y, Uehara Y, Sugane K, Agematsu K (2005) Regulation of aged humoral immune defense against pneumococcal bacteria by IgM memory B cell. J Immunol 175:3262–3267PubMedCrossRefGoogle Scholar
  120. Siddiqui KRR, Powrie F (2008) CD103(+) GALT DCs promote Foxp3(+) regulatory T cells. Mucosal Immunol 1:S34–S38PubMedCrossRefGoogle Scholar
  121. Singh T, Newman AB (2011) Inflammatory markers in population studies of aging. Ageing Res Rev 10:319–329PubMedCentralPubMedCrossRefGoogle Scholar
  122. Smith PD, Smythies LE, Shen R, Greenwell-Wild T, Gliozzi M, Wahl SM (2011) Intestinal macrophages and response to microbial encroachment. Mucosal Immunol 4:31–42PubMedCrossRefGoogle Scholar
  123. Solana R, Mariani E (2000) NK and NK/T cells in human senescence. Vaccine 18:1613–1620PubMedCrossRefGoogle Scholar
  124. Solana R, Pawelec G, Tarazona R (2006) Aging and innate immunity. Immunity 24:491–494PubMedCrossRefGoogle Scholar
  125. Sommer F, Backhed F (2013) The gut microbiota–masters of host development and physiology. Nat Rev Microbiol 11:227–238PubMedCrossRefGoogle Scholar
  126. Stephan RP, Sanders VM, Witte PL (1996) Stage-specific alterations in murine B lymphopoiesis with age. Int Immunol 8:509–518PubMedCrossRefGoogle Scholar
  127. Sundstrom P, Ahlmanner F, Akeus P, Sundquist M, Alsen S, Yrlid U, Borjesson L, Sjoling A, Gustavsson B, Wong SB, Quiding-Jarbrink M (2015) Human mucosa-associated invariant T cells accumulate in colon adenocarcinomas but produce reduced amounts of IFN-gamma. J Immunol 195:3472–3481PubMedCrossRefGoogle Scholar
  128. Tal S, Guller V, Levi S, Bardenstein R, Berger D, Gurevich I, Gurevich A (2005) Profile and prognosis of febrile elderly patients with bacteremic urinary tract infection. The Journal of infection 50:296–305PubMedCrossRefGoogle Scholar
  129. Targonski PV, Jacobson RM, Poland GA (2007) Immunosenescence: role and measurement in influenza vaccine response among the elderly. Vaccine 25:3066–3069PubMedCrossRefGoogle Scholar
  130. Taylor LD, Daniels CK, Schmucker DL (1992) Aging compromises gastrointestinal mucosal immune-response in the rhesus-monkey. Immunology 75:614–618PubMedCentralPubMedGoogle Scholar
  131. Thoreux K, Owen RL, Schmucker DL (2000) Intestinal lymphocyte number, migration and antibody secretion in young and old rats. Immunology 101:161–167PubMedCentralPubMedCrossRefGoogle Scholar
  132. Timpini A, Facchi E, Cossi S, Ghisla MK, Romanelli G, Marengoni A (2011) Self-reported socio-economic status, social, physical and leisure activities and risk for malnutrition in late life: a cross-sectional population-based study. The journal of nutrition, health & aging 15:233–238CrossRefGoogle Scholar
  133. Tsaknaridis L, Spencer L, Culbertson N, Hicks K, LaTocha D, Chou YK, Whitham RH, Bakke A, Jones RE, Offner H et al (2003) Functional assay for human CD4(+)CD25(+) Treg cells reveals an age-dependent loss of suppressive activity. J Neurosci Res 74:296–308PubMedCrossRefGoogle Scholar
  134. Vallejo AN (2005) CD28 extinction in human T cells: altered functions and the program of T-cell senescence. Immunol Rev 205:158–169PubMedCrossRefGoogle Scholar
  135. van Wijk F, Cheroutre H (2009) Intestinal T cells: facing the mucosal immune dilemma with synergy and diversity. Semin Immunol 21:130–138PubMedCentralPubMedCrossRefGoogle Scholar
  136. Veneri D, Ortolani R, Franchini M, Tridente G, Pizzolo G, Vella A (2009) Expression of CD27 and CD23 on peripheral blood B lymphocytes in humans of different ages. Blood transfusion 7:29–34PubMedCentralPubMedGoogle Scholar
  137. Walford RL (1969) The immunologic theory of aging. Munksgaard Press, CopenhagenGoogle Scholar
  138. Walker LJ, Tharmalingam H, Klenerman P (2014) The rise and fall of MAIT cells with age. Scand J Immunol 80:462–463PubMedCentralPubMedCrossRefGoogle Scholar
  139. Wang C, Liu Y, Xu LT, Jackson KJ, Roskin KM, Pham TD, Laserson J, Marshall EL, Seo K, Lee JY et al (2014) Effects of aging, cytomegalovirus infection, and EBV infection on human B cell repertoires. J Immunol 192:603–611PubMedCentralPubMedCrossRefGoogle Scholar
  140. Wei C, Anolik J, Cappione A, Zheng B, Pugh-Bernard A, Brooks J, Lee EH, Milner EC, Sanz I (2007) A new population of cells lacking expression of CD27 represents a notable component of the B cell memory compartment in systemic lupus erythematosus. J Immunol 178:6624–6633PubMedCrossRefGoogle Scholar
  141. Weinberger B, Herndler-Brandstetter D, Schwanninger A, Weiskopf D, Grubeck-Loebenstein B (2008) Biology of immune responses to vaccines in elderly persons. Clin Infect Dis 46:1078–1084PubMedCrossRefGoogle Scholar
  142. Williams PD, Day T (2003) Antagonistic pleiotropy, mortality source interactions, and the evolutionary theory of senescence. Evolution 57:1478–1488PubMedCrossRefGoogle Scholar
  143. Wimmers F, Schreibelt G, Skold AE, Figdor CG, De Vries IJ (2014) Paradigm shift in dendritic cell-based immunotherapy: from in vitro generated monocyte-derived DCs to naturally circulating DC subsets. Front Immunol 5:165PubMedCentralPubMedCrossRefGoogle Scholar
  144. Woodmansey EJ (2007) Intestinal bacteria and ageing. J Appl Microbiol 102:1178–1186PubMedCrossRefGoogle Scholar
  145. Woodmansey EJ, McMurdo MET, Macfarlane GT, Macfarlane S (2004) Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects. Appl Environ Microb 70:6113–6122CrossRefGoogle Scholar
  146. Wu Y, Wang X, Csencsits KL, Haddad A, Walters N, Pascual DW (2001) M cell-targeted DNA vaccination. Proc Natl Acad Sci USA 98:9318–9323PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Serena Martelli
    • 1
    • 2
  • Sylvia L. F. Pender
    • 1
  • Anis Larbi
    • 2
    Email author
  1. 1.Academic Unit of Clinical and Experimental Sciences, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
  2. 2.Singapore Immunology Network (SIgN), Aging and Immunity ProgramAgency for Science Technology and Research (A*STAR)SingaporeSingapore

Personalised recommendations