Skip to main content
Log in

Mutually exclusive distribution of the sap and eag S-layer genes and the lytB/lytA cell wall hydrolase genes in Bacillus thuringiensis

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Recently, two Bacillus thuringiensis strains were reported to synthesize parasporal inclusion bodies made not of the expected crystal (Cry) proteins but rather of the surface layer proteins (SLP) Sap (encoded by sap) and EA1 (encoded by eag), respectively. Whether the presence of the sap and eag genes is restricted to these two B. thuringiensis strains or ubiquitous in B. thuringiensis is unknown. We report here the distribution of the sap and eag genes in B. thuringiensis. Strains in the Bacillus cereus group were added for comparison purposes. We show that sap and eag are either present in tandem in 35% of the B. thuringiensis strains analysed and absent in 65% of the strains. When absent, a different tandem, the lytB/lytA cell wall hydrolase genes, is present. The distribution of the sap and eag S-layer and the lytB/lytA cell wall hydrolase genes is not species-specific in B. thuringiensis, B. cereus and Bacillus weihenstephanensis. Bacillus anthracis and Bacillus mycoides harbor sap and eag but not lytB/lytA. The sap, eag and lytB/lytA genes were absent in Bacillus pseudomycoides. Clearly, the distribution of the sap and eag S-layer and the lytB/lytA cell wall hydrolase genes in B. thuringiensis and in the Bacillus cereus group is mutually exclusive. We also showed that two genes involved in cell wall metabolism, csaA and csaB, are present not only upstream of the sap and eag S-layer genes, but also upstream of the lytB/lytA tandem in strains where sap and eag are absent. Bootstrapped neighbor-joining trees were inferred from the translated amino acid sequences of sap, eag and the tandem lytB/lytA, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Article  PubMed  CAS  Google Scholar 

  • Drobniewski FA (1993) Bacillus cereus and related species. Clin Microbiol Rev 6:324–338

    PubMed  CAS  Google Scholar 

  • Etienne-Toumelin I, Sirard JC, Duflot E, Mock M, Fouet A (1995) Characterization of the Bacillus anthracis S-layer: cloning and sequencing of the structural gene. J Bacteriol 177:614–620

    PubMed  CAS  Google Scholar 

  • Garcia-Robles I, Sanchez J, Gruppe A, Martinez-Ramirez AC, Rausell C, Real MD, Bravo A (2001) Mode of action of Bacillus thuringiensis PS86Q3 strain in hymenopteran forest pests Insect. Biochem Mol Biol 31:849–856

    CAS  Google Scholar 

  • Glare TR, O’Callaghan M (2000) Bacillus thuringiensis: biology, ecology and safety. Wiley, Toronto, Canada

    Google Scholar 

  • Guo G, Zhang L, Zhou Z, Ma Q, Liu J, Zhu C, Zhu L, Yu Z, Sun M (2008) A new group of parasporal inclusions encoded by the S-layer gene of Bacillus thuringiensis. FEMS Microbiol Lett 282:1–7

    Article  PubMed  CAS  Google Scholar 

  • Han CS, Xie G, Challacombe JF, Altherr MR, Bhotika SS, Bruce D, Campbell CS, Campbell ML, Chen J, Chertkov O, Cleland C, Dimitrijevic M, Doggett NA, Fawcett JJ, Glavina T, Goodwin LA, Hill KK, Hitchcock P, Jackson PJ, Keim P, Kewalramani AR, Longmire J, Lucas S, Malfatti S, McMurry K, Meincke LJ, Misra M, Moseman BL, Mundt M, Munk AC, Okinaka RT, Parson-Quintana B, Reilly LP, Richardson P, Robinson DL, Rubin E, Saunders E, Tapia R, Tesmer JG, Thayer N, Thompson LS, Tice H, Ticknor LO, Wills PL, Brettin TS, Gilna P (2006) Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis. J Bacteriol 188:3382–3390

    Article  PubMed  Google Scholar 

  • Höfte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255

    PubMed  Google Scholar 

  • Jensen GB, Hansen BM, Eilenberg J, Mahillon J (2003) The hidden lifestyles of Bacillus cereus and relatives. Environ Microbiol 5:631–640

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Lecadet M-M, Frachon E, Cosmao Dumanoir V, Ripouteau H, Hamon S, Laurent P, Thiery I (1999) Updating the H-antigen classification of Bacillus thuringiensis. J Appl Microbiol 86:660–672

    Article  PubMed  CAS  Google Scholar 

  • Lechner S, Mayr R, Francis KP, Prüß BM, Kaplan T, Wießner-Gunkel E, Stewartz GSAB, Scherer S (1998) Bacillus weihenstephanensis sp. nov is a new psychrotolerant species of the Bacillus cereus group. Int J Syst Bacteriol 48:1373–1382

    Article  PubMed  CAS  Google Scholar 

  • Logan NA, De Vos P (2009) Genus I. Bacillus Cohn 1872, 174, AL. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. NY, Springer, New York, pp 21–128

    Google Scholar 

  • Mesnage S, Tosi-Couture E, Mock M, Gounon P, Fouet A (1997) Molecular characterization of the Bacillus anthracis main S-layer component: evidence that it is the major cell-associated antigen. Mol Microbiol 23:1147–1155

    Article  PubMed  CAS  Google Scholar 

  • Mesnage S, Fontaine T, Mignot T, Delepierre M, Mock M, Fouet A (2000) Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO J 19:4473–4484

    Article  PubMed  CAS  Google Scholar 

  • Mignot T, Denis B, Couture-Tosi E, Kolstø AB, Mock M, Fouet A (2001) Distribution of S-layers on the surface of Bacillus cereus strains: phylogenetic origin and ecological pressure. Environ Microbiol 3:493–501

    Article  PubMed  CAS  Google Scholar 

  • Mignot T, Mesnage S, Couture-Tosi E, Mock M, Fouet A (2002) Developmental switch of S-layer protein synthesis in Bacillus anthracis. Mol Microbiol 43:1615–1627

    Article  PubMed  CAS  Google Scholar 

  • Missiakas DM, Schneewind O (2005) Bacillus anthracis and the pathogenesis of anthrax. In: Lindler LE, Lebeda FJ, Korch GW (eds) Biological weapons defense. Infectious disease, part II. Humana press, Totowa, NJ, pp 79–97

    Google Scholar 

  • Nakamura LK (1998) Bacillus pseudomycoides sp. nov. Int J Syst Bacteriol 48:1031–1035

    Article  PubMed  CAS  Google Scholar 

  • Peña G, Miranda-Rios J, de la Riva G, Pardo-López L, Soberón M, Bravo A (2006) A Bacillus thuringiensis S-layer protein involved in toxicity against Epilachna varivestis (Coleoptera: Coccinellidae). Appl Environ Microbiol 72:353–360

    Article  PubMed  Google Scholar 

  • Read TD, Akmal A, Bioshop-Lilly K, Chen PE, Cook C, Kiley MP, Lentz S, Mateczun A, Nagarajan N, Nolan N, Osborne BI, Pop M, Sozhamannan S, Stewart AC, Sulakvelidze A, Thomason B, Willner K, Zwick ME (2010) Accession number CM000745, unpublished

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Sára M (2001) Conserved anchoring mechanisms between crystalline cell surface S-layer protein and secondary cell wall polymers in Gram-positive bacteria. Trends Microbiol 9:47–49

    Article  PubMed  Google Scholar 

  • Sára M, Sleytr UB (2000) S-layer proteins. J Bact 182:859–868

    Article  PubMed  Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean HD (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    PubMed  CAS  Google Scholar 

  • Schoeni JL, Wong AC (2005) Bacillus cereus food poisoning and its toxins. J Food Prot 68:636–648

    PubMed  CAS  Google Scholar 

  • Shockman GD, Höltje J-V (1994) Microbial peptidoglycan (murein) hydrolases. In: Ghuysen J-M, Hakenbeck R (eds) Bacterial cell wall. Elsevier, Amsterdam, The Netherlands, pp 131–166

    Chapter  Google Scholar 

  • Sleytr UB, Beveridge TJ (1999) Bacterial S-layers. Trends Microbiol 7:253–260

    Article  PubMed  CAS  Google Scholar 

  • Sleytr UB, Sára M (1997) Bacterial and archael S-layer proteins: structure-function relationships and their biotechnological applications. TIBTECH 15:20–26

    CAS  Google Scholar 

  • Sleytr UB, Messner P, Pum D, Sára M (1999) Crystalline bacterial cell surface layers (S-layers): from supramolecular cell structure to biomimetics and nanotechnology. Angew Chem Int Ed 38:1034–1054

    Article  CAS  Google Scholar 

  • Sleytr UB, Sára M, Pum D, Schuster B (2001) Characterization and use of crystalline bacterial cell surface layer. Prog Surface Sci 68:231–278

    Article  CAS  Google Scholar 

  • Soufiane B, Côté JC (2009) Discrimination among Bacillus thuringiensis H serotypes, serovars and strains based on 16S rRNA, gyrB and aroE gene sequence analyses. Antonie Leeuwenhoek 95:33–45

    Article  PubMed  CAS  Google Scholar 

  • Sun M, Zhu C, Yu Z (2001) Cloning of parasporal body protein gene resembling to S-layer protein genes from Bacillus thuringiensis CTC strain. Acta Microbiol Sin 41:141–147

    CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Turnbull PCB, Jackson PJ, Hill KK, Keim P, Kolstø A-B, Beecher DJ (2002) Longstanding taxonomic enigmas within the “Bacillus cereus group” are on the verge of being resolved by far-reaching molecular development: forecasts on the possible outcome by an ad hoc team. In: Berkeley R, Hendrickx M, logan N, De Vos P (eds) Applications and systematics of Bacillus and relatives. Blackwell Publishing, Oxford, U.K

    Google Scholar 

  • Vilas-Bôas GT, Peruca AP, Arantes OM (2007) Biology and taxonomy of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis. Can J Microbiol 53:673–687

    Article  PubMed  Google Scholar 

  • Wojciechowska JA, Lewitin E, Revina LP, Zalunin IA, Chestukhina GG (1999) Two novel delta-endotoxin gene families cry26 and cry28 from Bacillus thuringiensis ssp. finitimus. FEBS Letters 453:46–48

    Article  PubMed  CAS  Google Scholar 

  • Zhu C, Yu Z (2008) The surface layer protein of Bacillus thuringiensis CTC forms unique intracellular parasporal inclusion body. J Basic Microbiol 48:302–307

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Charles Côté.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 61 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soufiane, B., Sirois, M. & Côté, JC. Mutually exclusive distribution of the sap and eag S-layer genes and the lytB/lytA cell wall hydrolase genes in Bacillus thuringiensis . Antonie van Leeuwenhoek 100, 349–364 (2011). https://doi.org/10.1007/s10482-011-9590-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-011-9590-1

Keywords

Navigation