Skip to main content

Advertisement

Log in

Toward a sustainable system of wastewater treatment plants in Chile: a multi-objective optimization approach

  • S.I.: MOPGP19
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Over the past fifty years the population of the world has doubled, while resources as water have become increasingly scarce. In particular, water consumption has far exceeded the available of this resource in some regions of the world. In order to address the above problem, the possibility of reusing grey water by installing wastewater treatment plants could be a suitable alternative for several developing countries. This paper seeks to find the best configuration for these facilities in Chile by considering the economic and environmental aspects conjoint to the social dimension. The problem is modeled as a multi-objective optimization including: minimizing costs, minimizing environmental impact, maximizing phosphorus extraction from wastewater and maximizing the number of workers to be required with the goal of analyzing the sustainability of the system. To find the Pareto frontiers of multi-objective problem, a resolution framework based on an adaptation of elitist non-dominated sorting genetic algorithm (NSGA-II) is provided for the problem. From the obtained results, the non-dominated solutions and a compromise solution are computed, reporting configuration alternatives that integrate the three sustainability dimensions, the economic, the environmental and the social as objectives for the design for a sustainable system of wastewater treatment plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. In Law 21075 regulating the collection, reuse and disposal of wastewater.

  2. In Law 21075 regulating the collection, reuse and disposal of wastewater; and Law 18902

References

  • Abbass, H. A., Sarker, R., & Newton, C. (2001). PDE: A pareto-frontier differential evolution approach for multi-objective optimization problems. In Proceedings of the 2001 Congress on IEEE Evolutionary Computation, (vol. 2, pp. 971–978). IEEE.

  • Abraham, A., & Jain, L. (2005). Evolutionary multiobjective optimization. In Evolutionary Multiobjective Optimization: Springer.

    Book  Google Scholar 

  • Altarabsheh, A., Ventresca, M., & Kandil, A. (2018). Evolutionary algorithm for selecting wastewater system configuration. Journal of Computing in Civil Engineering, 32(6), 04018048.

    Article  Google Scholar 

  • Alvarado, F., & Verónica, M. (2007). Tratamiento y reutilización de aguas grises con aplicación a caso en Chile.

  • Balkema, A. J., Preisig, H. A., Otterpohl, R., & Lambert, F. J. (2002). Indicators for the sustainability assessment of wastewater treatment systems. Urban Water, 4(2), 153–161.

    Article  Google Scholar 

  • Barañao, P., & Tapia, L. (2004). Tratamiento de las aguas servidas: situación en Chile. Ciencia y Trabajo, 6(13), 111–117.

    Google Scholar 

  • Broschek, U. (2010). Reúso de aguas residuales urbanas y rurales en Chile: Factibilidad e impacto como nueva fuente de agua para zonas de escasez hídrica. Fundación Chile: Technical report.

    Google Scholar 

  • Chile, F. (2010). Estimación de costos de abatimiento de contaminantes en residuos líquidos. CONAMA: Technical report.

    Google Scholar 

  • Coello, C. A. (1999). A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowledge and Information Systems, 1(3), 269–308.

    Article  Google Scholar 

  • Colapinto, C., Jayaraman, R., Abdelaziz, F. B., & La Torre, D. (2019). Environmental sustainability and multifaceted development: multi-criteria decision models with applications. Annals of Operations Research, 1–28.

  • Coria, I. D. (2008). El estudio de impacto ambiental: características y metodologías. Invenio, 11(20), 125–135.

    Google Scholar 

  • Cusi Bravo, D. (2014). Estudio de impacto ambiental de la carretera pumamarca-abra san martín del distrito de san sebastían.

  • Desa, U. (2019). World population prospects 2019: Highlights. New York (US): United Nations Department for Economic and Social Affairs.

    Google Scholar 

  • Espinoza, A. T., Narvñez, P., Camargo, M., & Alfaro, M. D. (2019). Multiobjective optimization for the design of phase iii biorefinery sustainable supply chain. Journal of Cleaner Production, 223, 189–213.

    Article  Google Scholar 

  • Espinoza Perez A. T. (2017). Biorefinery supply chain design optimization under sustainability dimensions. PhD thesis.

  • Espinoza Pino, M. H. (2017). Humedales artificiales en mercado de tratamiento de aguas residuales, análisis de una potencial transición hacia una economía con enfoque circular.

  • García, A. (2007). Responsabilidad social empresarial. su contribución al desarrollo sostenible. Revista Futuros, 5, 17.

  • Gerba, C. P., Thurston, J., Falabi, J., Watt, P., & Karpiscak, M. (1999). Optimization of artificial wetland design for removal of indicator microorganisms and pathogenic protozoa. Water Science and Technology, 40(4–5), 363.

    Article  Google Scholar 

  • GRI (2016). Consolidated set of gri sustainability reporting standards 2016.

  • Hamidreza, M., Mahdi Rashidi, K., Seyed Taghi, A. N., & Hani, P. (2016). Bi-objective optimization of a three-echelon multi-server supply-chain problem in congested systems: Modeling and solution. Computers & Industrial Engineering, 41–62.

  • Han, H.-G., Zhang, L., Liu, H.-X., & Qiao, J.-F. (2018). Multiobjective design of fuzzy neural network controller for wastewater treatment process. Applied Soft Computing, 67, 467–478.

    Article  Google Scholar 

  • Heydarzadeh, R., Tabesh, M., & Scholz, M. (2019). Multiobjective optimization in sewer network design to improve wastewater quality. Journal of Pipeline Systems Engineering and Practice, 10(4), 04019037.

    Article  Google Scholar 

  • Homsi Auchen, J. (2016). Determinación de tarifas 2016–2021 concesiones sanitarias II Región de Antofagasta. KRISOL: Technical report.

    Google Scholar 

  • Huang, Y., Dong, X., Zeng, S., & Chen, J. (2015). An integrated model for structure optimization and technology screening of urban wastewater systems. Frontiers of Environmental Science & Engineering, 9(6), 1036–1048.

    Article  Google Scholar 

  • Kalyanmoy, D., Amrit, P., Sameer, A., & T., M. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, pp 182–197.

  • Lee, S., Janghorban, I., Ifaei, P., Moya, W., & Yoo, C. (2017). Thermo-environ-economic modeling and optimization of an integrated wastewater treatment plant with a combined heat and power generation system. Energy Conversion and Management, 142, 385–402.

    Article  Google Scholar 

  • Marler, T., & Arora, J. S. (2004). Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization, 26(6), 369–395.

    Article  Google Scholar 

  • Méndez, L., Miyashiro, V., Rojas, R., Cotrado, M., & Carrasco, N. (2004). Tratamiento de aguas residuales mediante lodos activados a escala laboratorio. Revista del Instituto de Investigación FIGMMG, 7(14), 74–83.

    Google Scholar 

  • Mina, D., Vahab, V., Maghsoud, A., Elaheh, R., & Seyedmohammad, S. (2019). A multi-objective optimization model for a reliable generalized flow network design. Computers & Industrial Engineering, 1–18.

  • Miranda, R. (2000). Desarrollo, situación actual y aplicaciones potenciales de los humedales artificiales de flujo horizontal de México. PhD thesis, Tesis de Licenciatura, Facultad de Química, Universidad Nacional Autónoma de México.

  • Qiao, J.-F., Hou, Y., Zhang, L., & Han, H.-G. (2018). Adaptive fuzzy neural network control of wastewater treatment process with multiobjective operation. Neurocomputing, 275, 383–393.

    Article  Google Scholar 

  • Seshadri, A. (2020). multi-objective optimizaion using evolutionary algorithm (https://www.mathworks.com/matlabcentral/fileexchange/10351-multi-objective-optimizaion-using-evolutionary-algorithm). MATLAB Central File Exchange.

  • Sweetapple, C., Fu, G., & Butler, D. (2016). Reliable, robust, and resilient system design framework with application to wastewater-treatment plant control. Journal of Environmental Engineering, 143(3), 04016086.

    Article  Google Scholar 

  • Tsai, J. C., Chen, V. C., Beck, M. B., & Chen, J. (2004). Stochastic dynamic programming formulation for a wastewater treatment decision-making framework. Annals of Operations Research, 132(1–4), 207–221.

    Article  Google Scholar 

  • Udías, A., Efremov, R., Galbiati, L., & Cañamón, I. (2014). Simulation and multicriteria optimization modeling approach for regional water restoration management. Annals of Operations Research, 219(1), 123–140.

    Article  Google Scholar 

  • UN-Water (2018). Sustainable development goal 6 synthesis report on water and sanitation (p. 10017). New Yor: Published by the United Nations New York.

  • Zadorojniy, A., Shwartz, A., Wasserkrug, S., & Zeltyn, S. (2016). Operational optimization of wastewater treatment plants: A CMDP based decomposition approach. Annals of Operations Research, 1–18.

  • Zhang, W., Wang, C., Li, Y., Wang, P., Wang, Q., & Wang, D. (2014). Seeking sustainability: multiobjective evolutionary optimization for urban wastewater reuse in China. Environmental Science & Technology, 48(2), 1094–1102.

    Article  Google Scholar 

  • Zhou, H., & Qiao, J. (2019). Multiobjective optimal control for wastewater treatment process using adaptive MOEA/D. Applied Intelligence, 49(3), 1098–1126.

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Constanza Corrales, Matías Kohle and Francisco Rivas for their comments and initial discussion of this work. This research was partially supported by Proyecto DICYT 062017EP, Universidad de Santiago de Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Teresa Espinoza Pérez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jorquera-Bravo, N., Espinoza Pérez, A.T. & Vásquez, Ó.C. Toward a sustainable system of wastewater treatment plants in Chile: a multi-objective optimization approach. Ann Oper Res 311, 731–747 (2022). https://doi.org/10.1007/s10479-020-03777-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-020-03777-4

Keywords

Navigation