Skip to main content
Log in

Simulation and multicriteria optimization modeling approach for regional water restoration management

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper presents a modeling framework that intends to select the optimal robust wastewater reclamation program of measures (PoM) to achieve the European Water Framework Directive (WFD) objectives in the inner Catalonia watersheds. The integrative methodological tool developed incorporates a water quality model to simulate the effects of the PoM used to reduce pollution pressures on the hydrologic network. A Multi-Objective Evolutionary Algorithm (MOEA) helps to identify efficient trade-offs between PoM cost and water quality. Interactive Decisions Map (IDM)—a multi-criteria visualization—based decision support tool is used to provide a clear idea of the trade-off between water status and the cost to achieve such situation. Lastly, a stochastic simulation model to analyze the sensitivity under varied environmental uncertainties is run. Moreover, the tool is oriented to guide water managers in their decision-making processes. Additionally, this paper analyzes the results of the application of the management tool in the inner Catalan watershed in order to perform the European WFD. This tool has had a key role in the design of part of the PoM which shall be implemented to achieve objectives of the WFD in 2015 in all the Catalan catchments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACA:

Catalan Water Agency

IDM:

Interactive Decision Maps

PoM:

Program of Measures

WFD:

Water Framework Directive

WWTP:

Waste Water Treatment Plant

TA:

Total Ammonium

TN:

Total Nitrogen

TP:

Total Phosphorus

TOC:

Total Organic Carbon

References

  • Benedetti, L., De Baets, B., Nopens, I., & Vanrolleghem, P. A. (2010). Multi-criteria analysis of wastewater treatment plant design and control scenarios under uncertainty. Environmental Modelling & Software.

  • Bishop, A. B., & Grenny,W. J. (1976). Coupled optimization-simulation water quality model. Journal of the Environmental Engineering Division, 102(5), 1071–1086.

    Google Scholar 

  • Boon, P. J., Holmes, N. T. H., Maitland, P. S., Rowell, T. A., & Davies, J. (1997). A system for evaluating rivers for conservation (SERCON): development, structure and function. In P. J. Boon, & D. L. Howell (Eds.), Freshwater quality: defining the indefinable? (pp. 299–326). Edinburg: The Stationery Office.

    Google Scholar 

  • Bowie, G. L., Mills, W. B., Porcella, D. B., Campbell, C. L., Pagenkopf, J. R., Rupp, G. L., Johnson, K. M., Chan, P. W. H., Gherini, S. A., & Chamberlin, C. E. (1985). Rates, constants, and kinetic formulations in surface water quality modeling. EPA/600/3-85/040, U.S. Environmental Protection Agency, Washington, DC.

  • Bourmistrova, L. V., Efremov, R. V., & Lotov, A. V. (2002). Decision-making visual support technique and its application in water resources management systems. Journal of Computer & Systems Sciences International, 41(5), 759–769.

    Google Scholar 

  • Bourmistrova, L. V., Efremov, R. V., Bushenkov, V. A., Buber, A. L., & Brainin, N. A. (2005). Experience of model integration and Pareto frontier visualization in the search for preferable water quality strategies. Environmental Modelling & Software, 20(2), 243–260.

    Article  Google Scholar 

  • Brown, L. C., & Barnwell, T.O. Jr. (1987). The enhanced stream water quality models, Qual-2E and Qual-2E, UNCAS: Documentation and Users Manual. EPA /600/3-87/007, Envir. Res. Lab., Envir. Protection Agency (EPA), Athens, GA.

  • Cai, X., McCinney, D. C., & Lasdon, L. S. (2001). Solving nonlinear water management models using a combined genetic algorithm and linear programming approach. Advances in Water Resources, 24(6), 667–676.

    Article  Google Scholar 

  • Charbonneau, P., & Knapp, B. (1995). A user’s guide to PIKAIA 1.0. NCAR Technical note 418+IA (Boulder: National Center for Atmospheric Research).

  • Cho, J. H., Sung, K. S., & Ha, S. R. (2004). A river water quality management model for optimising regional wastewater treatment using a genetic algorithm. Journal of Environmental Management, 73(3), 229–242.

    Article  Google Scholar 

  • Daniel, C. (1973). One-at-a-time-plants. Journal of the American Statistical Association, 68, 353–360.

    Article  Google Scholar 

  • Diari Oficial de la Generalitat de Catalunya (DOGC) (2003). Programa de sanejament d’aigües residuals industrials (PSARI-2003). Núm. 3986, 13/10/2003.

  • Diari Oficial de la Generalitat de Catalunya (DOGC) (2005). Programa de sanejament d’aigües residuals urbanes (PSARU 2005). Núm. 4679, 19.7.2006.

  • Diari Oficial de la Generalitat de Catalunya (2010). Decret d’aprovació del Pla de gestió del districte de conca fluvial de Catalunya 188/2010, de 23 de novembre. Núm. 5764–26.11.2010.

  • Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Hoboke: Wiley.

    Google Scholar 

  • European Commission (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy.

  • European Commission (2001). Strategic document: Common Strategy on the Implementation of the Water Framework Directive.

  • European Commission (2002). Economics and the environment. The implementation challenge of the Water Framework Directive. Policy summary to the guidance document.

  • European Commission (2007). Water Framework implementation reports. Towards sustainable water management in the European Union.

  • Fragoso, R., Bushenkov, V., & Marques, C. (2010). Multi-objective water allocation in the Alqueva region. Mediterranean Journal of Economics, Agriculture and Environment, 9, 28–35.

    Google Scholar 

  • Fujiwara, O., Gnanendran, S. K., & Ohgaki, S. (1987). Chance constrained model for river water quality management. Jour. Environ. Eng., ASCE.

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Reading: Addison-Wesley.

    Google Scholar 

  • Haimes, Y. Y. (1998). Risk modeling, assessment, and management, Wiley Series in Systems Engineering. New York: Wiley.

    Google Scholar 

  • Hajkowicz, S. A., & Collins, K. (2007). A review of multiple criteria analysis for water resource planning and management. Water Resources Management, 21(2007), 1553–1566.

    Article  Google Scholar 

  • Lotov, A. V., Bushenkov, V. A., & Kamenev, G. K. (2004). Applied optimization: Vol. 89. Interactive decision maps, approximation and visualization of Pareto frontier. Berlin: Springer.

    Book  Google Scholar 

  • Lotov, A. V., Bourmistrova, L. V., Efremov, R. V., Bushenkov, V. A., Buber, A. L., & Brainin, N. A. (2005). Experience of model integration and Pareto frontier visualization in the search for preferable water quality strategies. Environmental Modelling & Software, 20(2), 243–260.

    Article  Google Scholar 

  • Muleta, M. K., & Nicklow, J. W. (2005). Decision support for watershed management using evolutionary algorithms. Journal of Water Resources Planning and Management, 131(1), 35–44.

    Article  Google Scholar 

  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I-A discussion of principles. Journal of Hydrology, 10, 282–290.

    Article  Google Scholar 

  • Parker, G. T., Drosde, R. L., & Kennedy, K. J. (2008). Modelling the effect of agricultural best management practices on water quality under various climatic scenarios. Journal of Environmental Engineering and Science, 7(1), 9–19.

    Article  Google Scholar 

  • Pelletier, G., & Chapra, S. (2004). Qual2kw. User Manual (Version 5.1): A modeling framework for simulating river and stream water quality. Washington State Department of Ecology. Olympia, WA.

  • Qasim, S. R. (1999). Wastewater treatment plants: planning, design, and operation. Boca Raton: CRC Press.

    Google Scholar 

  • Rauch, W., Henze, M., Koncsos, L., Reichert, P., Shanahan, P., Somlyódy, L., & Vanrolleghem, P. (1998). River water quality modeling: I. State of the art. Water Science and Technology, 38(11), 237–244.

    Article  Google Scholar 

  • Revelle, C., Loucks, D., & Lynn, W. (1968). Linear programming applied to water quality management. Water Resources Research, 4(1), 1–9.

    Article  Google Scholar 

  • Ritzel, B. J., Eheart, J. W., & Ranjithan, S. (1994). Using genetic algorithms to solve a multiple objective groundwater pollution containment problem. Water Resources Research, 30(5), 1589–1603.

    Article  Google Scholar 

  • Romero, C., & Rehman, T. (1987). Natural resources management and the use of multiple-criteria decision making techniques: a review. European Review of Agricultural Economics, 14(1), 6–89.

    Article  Google Scholar 

  • Schumann, A. H., Dietrich, J., & Lotov, A. V. (2006). Workflow oriented participatory decision support for integrated river basin planning. In A. Castelletti & R. Sessa Soncini (Eds.), Topics on system analysis and integrated water resources management (pp. 207–222). Amsterdam: Elsevier.

    Google Scholar 

  • Shanahan, P., Henze, M., Koncsos, L., Rauch, W., Reichert, P., Somlyódy, L., & Vanrolleghem, P., (1998). River water quality modeling: II. Problems of the art. Water Science and Technology, 38(11), 245–252.

    Article  Google Scholar 

  • Soldevilla, M. V. (2009). Les repercussions de la Directiva Nitrats sobre la filière porcina a Catalunya. Col⋅lecció Monografies. Generalitat de Catalunya Departament d’Agricultura, Alimentació i Acció Rural.

  • Udías, A., Galbiati, L., Elorza, F. J., Efremov, R., Gómez, A., Chiang, G., Arrosa, M., & Lejarraga, T. (2009). Algoritmos genéticos para la selección de medidas de restauración de cuencas. In VI Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (MAEB’09) (pp. 139–146).

    Google Scholar 

  • Udías, A., Galbiati, L., Elorza, F. J., Efremov, R., Pons, J., & Borras, G. (2011). Framework for multi-criteria decision management in watershed restoration. Journal of Hydroinformatics. doi:10.2166/hydro.2011.107.

    Google Scholar 

  • Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & Grunert da Fonseca, V. (2003). Performance assessment of multi-objective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation, 7(2), 529–533.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by ACA, the project CAM s2009/esp-1594 of the Autonomous Community of Madrid and the projects MTM2009-14039-C063-03 and IPT-2011-0869-430000 of the Spanish Ministry of Science and Innovation. Additionally, the authors are grateful to Auditorías e Ingenierías, S.A. (Auding) that has been in charge of developing the database Qual2k implemented in the model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Udías.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Udías, A., Efremov, R., Galbiati, L. et al. Simulation and multicriteria optimization modeling approach for regional water restoration management. Ann Oper Res 219, 123–140 (2014). https://doi.org/10.1007/s10479-012-1101-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-012-1101-x

Keywords

Navigation