Skip to main content
Log in

Ultraviolet light measurements (280–400 nm) acquired from stratospheric balloon flight to assess influence on bioaerosols

  • Brief Communication
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Viable microorganisms collected from the Earth’s upper atmosphere are mysterious considering the intensely biocidal ultraviolet (UV) light conditions dominating rarefied air. Historically, most investigations examining the relationship between bioaerosols and UV conditions in the upper atmosphere have relied upon model-generated data. To address the shortage of in situ UV measurements in the upper troposphere and lower/middle stratosphere, we flew a meteorological balloon equipped with a UV radiometer and other core environmental sensors. The balloon payload launched from Illinois, USA, on October 6, 2018, and acquired UVA (315–400 nm) + UVB (280–315 nm) measurements for ~ 2 h up to 30.9 km. Above the atmospheric boundary layer, UVA + UVB values registered around 6 mW cm−2, results that were largely consistent with Tropospheric Ultraviolet–Visible model predictions. Performed in a low-cost, reusable manner with commercially available instruments, we show that reliable UV flux data can be acquired with meteorological balloon payload systems. This short communication provides relevant UVA + UVB results for aerobiology and astrobiology studies evaluating the survivability of microorganisms in the upper atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Choudoir, M. J., Barberán, A., Menninger, H. L., Dunn, R. R., & Fierer, N. (2018). Variation in range size and dispersal capabilities of microbial taxa. Ecology,99(2), 322–334.

    Article  Google Scholar 

  • Creamean, J. M., Suski, K. J., Rosenfeld, D., Cazorla, A., DeMott, P. J., Sullivan, R. C., et al. (2013). Dust and biological aerosols from the Sahara and Asia influence precipitation in the Western U.S. Science,339(6127), 1572–1578. https://doi.org/10.1126/science.1227279.

    Article  CAS  Google Scholar 

  • Dueker, M. E., French, S., & O’Mullan, G. D. (2018). Comparison of bacterial diversity in air and water of a Major Urban Center. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2018.02868.

    Article  Google Scholar 

  • Griffin, D. W. (2007). Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clinical Microbiology Reviews,20(3), 459–477. https://doi.org/10.1128/CMR.00039-06.

    Article  Google Scholar 

  • Griffin, D. W., Gonzalez-Martin, C., Hoose, C., & Smith, D. J. (2017). Global-scale atmospheric dispersion of microorganisms. In P. Amato & A. Delort (Eds.), Microbiology of aerosols (pp. 155–174). Hoboken: Wiley.

    Chapter  Google Scholar 

  • Khodadad, C. L., Wong, G. M., James, L. M., Thakrar, P. J., Lane, M. A., Catechis, J. A., et al. (2017). Stratosphere conditions inactivate bacterial endospores from a Mars spacecraft assembly facility. Astrobiology,17(4), 337–350. https://doi.org/10.1089/ast.2016.1549.

    Article  CAS  Google Scholar 

  • Kim, J. J., & Sundin, G. W. (2000). Regulation of the rulAB mutagenic DNA repair operon of Pseudomonas syringae by UV-B (290 to 320 nanometers) radiation and analysis of rulAB-mediated mutability in vitro and in planta. Journal of Bacteriology,182(21), 6137–6144. https://doi.org/10.1128/JB.182.21.6137-6144.2000.

    Article  CAS  Google Scholar 

  • Madronich, S., & Flocke, S. (1999). The role of solar radiation in atmospheric chemistry. In P. Boule (Ed.), Environmental photochemistry (pp. 1–26). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-69044-3_1.

    Chapter  Google Scholar 

  • Madronich, S., Olof Björn, L., & McKenzie, R. L. (2018). Solar UV radiation and microbial life in the atmosphere. Photochemical & Photobiological Sciences,17(12), 1918–1931. https://doi.org/10.1039/C7PP00407A.

    Article  CAS  Google Scholar 

  • McPeters, R. D., Heath, D. F., & Bhartia, P. K. (1984). Average ozone profiles for 1979 from the NIMBUS 7 SBUV instrument. Journal of Geophysical Research: Atmospheres,89(D4), 5199–5214. https://doi.org/10.1029/JD089iD04p05199.

    Article  CAS  Google Scholar 

  • Schuerger, A. C., Mancinelli, R. L., Kern, R. G., Rothschild, L. J., & McKay, C. P. (2003). Survival of endospores of bacillus subtilis on spacecraft surfaces under simulated Martian environments: implications for the forward contamination of Mars. Icarus,165(2), 253–276. https://doi.org/10.1016/S0019-1035(03)00200-8.

    Article  CAS  Google Scholar 

  • Smith, D. J., Griffin, D. W., McPeters, R. D., Ward, P. D., & Schuerger, A. C. (2011). Microbial survival in the stratosphere and implications for global dispersal. Aerobiologia,27(4), 319–332. https://doi.org/10.1007/s10453-011-9203-5.

    Article  Google Scholar 

  • Smith, D. J., Ravichandar, J. D., Jain, S., Griffin, D. W., Yu, H., Tan, Q., et al. (2018). Airborne bacteria in earth’s lower stratosphere resemble taxa detected in the troposphere: results from a new NASA Aircraft Bioaerosol Collector (ABC). Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2018.01752.

    Article  Google Scholar 

  • Smith, D. J., Thakrar, P. J., Bharrat, A. E., Dokos, A. G., Kinney, T. L., James, L. M., et al. (2014). A balloon-based payload for exposing microorganisms in the stratosphere (E-MIST). Gravitational and Space Research,2(2), 70–80.

    Google Scholar 

  • Smith, D. J., Timonen, H. J., Jaffe, D. A., Griffin, D. W., Birmele, M. N., Perry, K. D., et al. (2013). Intercontinental dispersal of bacteria and archaea by transpacific winds. Applied and Environmental Microbiology,79(4), 1134–1139. https://doi.org/10.1128/AEM.03029-12.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our study was supported by the NASA Astrobiology Program and a grant from NASA Planetary Protection (15-PPR15-0007). The National Center for Atmospheric Research is sponsored by the National Science Foundation. We thank Moshe Levy from Solar Light Co., Inc., for his assistance with radiometer calibration and data logging discussions. We acknowledge Dr. Britt Koskella and Dr. Steven Lindow for their insights and project support. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the US government. The views and opinions expressed herein do not necessarily state or reflect those of the US government and shall not be used for advertising or product endorsement purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Smith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caro, T.A., Wendeln, M., Freeland, M. et al. Ultraviolet light measurements (280–400 nm) acquired from stratospheric balloon flight to assess influence on bioaerosols. Aerobiologia 35, 771–776 (2019). https://doi.org/10.1007/s10453-019-09597-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-019-09597-9

Keywords

Navigation