Advertisement

Aerobiologia

, Volume 35, Issue 4, pp 771–776 | Cite as

Ultraviolet light measurements (280–400 nm) acquired from stratospheric balloon flight to assess influence on bioaerosols

  • Tristan A. Caro
  • Matthew Wendeln
  • Matthew Freeland
  • Noelle Bryan
  • Samantha M. Waters
  • Alexa McIntyre
  • Patrick Nicoll
  • Sasha Madronich
  • David J. SmithEmail author
Brief Communication

Abstract

Viable microorganisms collected from the Earth’s upper atmosphere are mysterious considering the intensely biocidal ultraviolet (UV) light conditions dominating rarefied air. Historically, most investigations examining the relationship between bioaerosols and UV conditions in the upper atmosphere have relied upon model-generated data. To address the shortage of in situ UV measurements in the upper troposphere and lower/middle stratosphere, we flew a meteorological balloon equipped with a UV radiometer and other core environmental sensors. The balloon payload launched from Illinois, USA, on October 6, 2018, and acquired UVA (315–400 nm) + UVB (280–315 nm) measurements for ~ 2 h up to 30.9 km. Above the atmospheric boundary layer, UVA + UVB values registered around 6 mW cm−2, results that were largely consistent with Tropospheric Ultraviolet–Visible model predictions. Performed in a low-cost, reusable manner with commercially available instruments, we show that reliable UV flux data can be acquired with meteorological balloon payload systems. This short communication provides relevant UVA + UVB results for aerobiology and astrobiology studies evaluating the survivability of microorganisms in the upper atmosphere.

Keywords

Ultraviolet light Balloon Troposphere Stratosphere Bioaerosols 

Notes

Acknowledgements

Our study was supported by the NASA Astrobiology Program and a grant from NASA Planetary Protection (15-PPR15-0007). The National Center for Atmospheric Research is sponsored by the National Science Foundation. We thank Moshe Levy from Solar Light Co., Inc., for his assistance with radiometer calibration and data logging discussions. We acknowledge Dr. Britt Koskella and Dr. Steven Lindow for their insights and project support. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the US government. The views and opinions expressed herein do not necessarily state or reflect those of the US government and shall not be used for advertising or product endorsement purposes.

References

  1. Choudoir, M. J., Barberán, A., Menninger, H. L., Dunn, R. R., & Fierer, N. (2018). Variation in range size and dispersal capabilities of microbial taxa. Ecology,99(2), 322–334.CrossRefGoogle Scholar
  2. Creamean, J. M., Suski, K. J., Rosenfeld, D., Cazorla, A., DeMott, P. J., Sullivan, R. C., et al. (2013). Dust and biological aerosols from the Sahara and Asia influence precipitation in the Western U.S. Science,339(6127), 1572–1578.  https://doi.org/10.1126/science.1227279.CrossRefGoogle Scholar
  3. Dueker, M. E., French, S., & O’Mullan, G. D. (2018). Comparison of bacterial diversity in air and water of a Major Urban Center. Frontiers in Microbiology.  https://doi.org/10.3389/fmicb.2018.02868.CrossRefGoogle Scholar
  4. Griffin, D. W. (2007). Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clinical Microbiology Reviews,20(3), 459–477.  https://doi.org/10.1128/CMR.00039-06.CrossRefGoogle Scholar
  5. Griffin, D. W., Gonzalez-Martin, C., Hoose, C., & Smith, D. J. (2017). Global-scale atmospheric dispersion of microorganisms. In P. Amato & A. Delort (Eds.), Microbiology of aerosols (pp. 155–174). Hoboken: Wiley.CrossRefGoogle Scholar
  6. Khodadad, C. L., Wong, G. M., James, L. M., Thakrar, P. J., Lane, M. A., Catechis, J. A., et al. (2017). Stratosphere conditions inactivate bacterial endospores from a Mars spacecraft assembly facility. Astrobiology,17(4), 337–350.  https://doi.org/10.1089/ast.2016.1549.CrossRefGoogle Scholar
  7. Kim, J. J., & Sundin, G. W. (2000). Regulation of the rulAB mutagenic DNA repair operon of Pseudomonas syringae by UV-B (290 to 320 nanometers) radiation and analysis of rulAB-mediated mutability in vitro and in planta. Journal of Bacteriology,182(21), 6137–6144.  https://doi.org/10.1128/JB.182.21.6137-6144.2000.CrossRefGoogle Scholar
  8. Madronich, S., & Flocke, S. (1999). The role of solar radiation in atmospheric chemistry. In P. Boule (Ed.), Environmental photochemistry (pp. 1–26). Berlin, Heidelberg: Springer.  https://doi.org/10.1007/978-3-540-69044-3_1.CrossRefGoogle Scholar
  9. Madronich, S., Olof Björn, L., & McKenzie, R. L. (2018). Solar UV radiation and microbial life in the atmosphere. Photochemical & Photobiological Sciences,17(12), 1918–1931.  https://doi.org/10.1039/C7PP00407A.CrossRefGoogle Scholar
  10. McPeters, R. D., Heath, D. F., & Bhartia, P. K. (1984). Average ozone profiles for 1979 from the NIMBUS 7 SBUV instrument. Journal of Geophysical Research: Atmospheres,89(D4), 5199–5214.  https://doi.org/10.1029/JD089iD04p05199.CrossRefGoogle Scholar
  11. Schuerger, A. C., Mancinelli, R. L., Kern, R. G., Rothschild, L. J., & McKay, C. P. (2003). Survival of endospores of bacillus subtilis on spacecraft surfaces under simulated Martian environments: implications for the forward contamination of Mars. Icarus,165(2), 253–276.  https://doi.org/10.1016/S0019-1035(03)00200-8.CrossRefGoogle Scholar
  12. Smith, D. J., Griffin, D. W., McPeters, R. D., Ward, P. D., & Schuerger, A. C. (2011). Microbial survival in the stratosphere and implications for global dispersal. Aerobiologia,27(4), 319–332.  https://doi.org/10.1007/s10453-011-9203-5.CrossRefGoogle Scholar
  13. Smith, D. J., Ravichandar, J. D., Jain, S., Griffin, D. W., Yu, H., Tan, Q., et al. (2018). Airborne bacteria in earth’s lower stratosphere resemble taxa detected in the troposphere: results from a new NASA Aircraft Bioaerosol Collector (ABC). Frontiers in Microbiology.  https://doi.org/10.3389/fmicb.2018.01752.CrossRefGoogle Scholar
  14. Smith, D. J., Thakrar, P. J., Bharrat, A. E., Dokos, A. G., Kinney, T. L., James, L. M., et al. (2014). A balloon-based payload for exposing microorganisms in the stratosphere (E-MIST). Gravitational and Space Research,2(2), 70–80.Google Scholar
  15. Smith, D. J., Timonen, H. J., Jaffe, D. A., Griffin, D. W., Birmele, M. N., Perry, K. D., et al. (2013). Intercontinental dispersal of bacteria and archaea by transpacific winds. Applied and Environmental Microbiology,79(4), 1134–1139.  https://doi.org/10.1128/AEM.03029-12.CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply  2019

Authors and Affiliations

  • Tristan A. Caro
    • 1
  • Matthew Wendeln
    • 2
  • Matthew Freeland
    • 3
  • Noelle Bryan
    • 4
  • Samantha M. Waters
    • 5
  • Alexa McIntyre
    • 6
  • Patrick Nicoll
    • 7
  • Sasha Madronich
    • 8
  • David J. Smith
    • 9
    Email author
  1. 1.Department of Integrative BiologyUC BerkeleyBerkeleyUSA
  2. 2.ChicagoUSA
  3. 3.CambridgeUSA
  4. 4.Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeUSA
  5. 5.Universities Space Research AssociationNASA Ames Research CenterMoffett FieldUSA
  6. 6.Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkUSA
  7. 7.Blue Marble Space Institute of ScienceNASA Ames Research CenterMoffett FieldUSA
  8. 8.National Center for Atmospheric ResearchBoulderUSA
  9. 9.Space Biosciences DivisionNASA Ames Research CenterMoffett FieldUSA

Personalised recommendations