Skip to main content
Log in

Fine structures for the solutions of the two-dimensional Riemann problems by high-order WENO schemes

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The two-dimensional Riemann problem with polytropic gas is considered. By a restriction on the constant states of each quadrant of the computational domain such that there is only one planar centered wave connecting two adjacent quadrants, there are nineteen genuinely different initial configurations of the problem. The configurations are numerically simulated on a fine grid and compared by the 5th-order WENO-Z5, 6th-order WENO-𝜃6, and 7th-order WENO-Z7 schemes. The solutions are very well approximated with high resolution of waves interactions phenomena and different types of Mach shock reflections. Kelvin-Helmholtz instability-like secondary-scaled vortices along contact continuities are well resolved and visualized. Numerical solutions show that WENO-𝜃6 outperforms the comparing WENO-Z5 and WENO-Z7 in terms of shock capturing and small-scaled vortices resolution. A catalog of the numerical solutions of all nineteen configurations obtained from the WENO-𝜃6 scheme is listed. Thanks to their excellent resolution and sharp shock capturing, the numerical solutions presented in this work can be served as reference solutions for both future numerical and theoretical analyses of the 2D Riemann problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405–452 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766–1792 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gottlieb, S., Shu, C.-W.: Total variation dimishing Runge-Kutta schemes. Math. Comput. 67(221), 73–85 (1998)

    Article  MATH  Google Scholar 

  5. Henrick, A.K., Aslam, T.D., Powers, J. M.: Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005)

    Article  MATH  Google Scholar 

  6. Ha, Y., Kim, C.H., Lee, Y., Yoon, J.: An improved weighted essentially non-oscillatory scheme with a new smoothness indicator. J. Comput. Phys. 232, 68–86 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Han, E., Li, J., Tang, H.: Accuracy of the adaptive GRP scheme and the simulation of 2-D Riemann problems for compressible Euler equations. Commun. Comput. Phys. 10(3), 577–606 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Harten, A., Osher, S.: Uniformly high-order accurate nonoscillatory schemes, I. SIAM J. Numer. Anal. 24(2), 279–309 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hu, X.Y., Wang, Q., Adams, N.A.: An adaptive central-upwind weighted essentially non-oscillatory scheme. J. Comput. Phys. 229, 8952–8965 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jung, C.-Y., Nguyen, T.B.: A new adaptive weighted essentially non-oscillatory WENO- 𝜃 scheme for hyperbolic conservation laws. Submitted, preprint at arXiv:1504.00731

  11. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kurganov, A., Tadmor, E.: Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Numer. Meth. Part. D. E. 18 (5), 584–608 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lax, P., Liu, X.-D.: Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput. 19(2), 319–340 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, J., Sheng, W., Zhang, T., Zheng, Y.: Two-dimensional Riemann problems: from scalar conservation laws to compressible Euler equations. Acta Math. Sci. 29B(4), 777–802 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Liska, R., Wendroff, B.: Comparison of several difference schemes on 1D and 2D test problems for the Euler equations. SIAM J. Sci. Comput. 25(3), 995–1017 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Seaïd, M.: High-resolution relaxation scheme for the two-dimensional Riemann problems in gas dynamics. Numerical Methods for Partial Differential Equations 22 (2), 397–413 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51(1), 82–126 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schulz-Rinne, C.W.: Classification of the Riemann problem for two-dimensional gas dynamics. SIAM J. Math. Anal. 24(1), 76–88 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schulz-Rinne, C.W., Collins, J.P., Glaz, H.M.: Numerical solution of the Riemann problem for two-dimensional gas dynamics. SIAM J. Sci. Comput. 14(6), 1394–1414 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shen, Y., Zha, G.: Improved Seventh-Order WENO Scheme, AIAA 2010–1451, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 4–7 January 2010, Orlando, Florida (2010)

  22. Tesdall, A.M., Sanders, R., Keyfitz, B.L.: The triple point paradox for the nonlinear wave system. SIAM J. Appl. Math. 67(2), 321–336 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Taylor, E.M., Wu, M., Martiń, M.P.: Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence. J Comput. Phys. 223, 384–397 (2007)

    Article  MATH  Google Scholar 

  24. Wagner, D.: The Riemann problem in two space dimensions for a single conservation law. SIAM J. Math. Anal. 14(3), 534–559 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yamaleev, N.K., Carpenter, M.H.: A systematic methodology for constructing high-order energy stable WENO schemes. J. Comput. Phys. 228, 4248–4272 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, T., Chen, G.: Some fundamental concepts about system of two spatial dimensional conservation laws. Acta Math. Sci. 6, 463–474 (1986)

    Article  MathSciNet  Google Scholar 

  27. Zhang, T., Chen, G.-C., Yang, S.: On the 2-D Riemann problm for the compressible Euler equations I. Interaction of shocks and rarefaction waves. Dis. Cont. Dyn. Sys. 1, 555–584 (1995)

    Article  Google Scholar 

  28. Zhang, T., Chen, G.-Q., Yang, S.: On the 2-D Riemann problem for the compressible Euler equations II. Interaction of contact discontinuities. Dis. Cont. Dyn. Sys. 6(2), 419–430 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zheng, Y.: Systems of conservation laws: two-dimensional Riemann problems. Birkhäuser, Boston (2001)

    Book  MATH  Google Scholar 

  30. Zhang, T., Zheng, Y.: Two-dimensional Riemann problem for a single conservation law. Trans. Amer. Math. Soc. 312(2), 589–619 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, T., Zheng, Y.: Conjecture on the structure of solutions of the Riemann problem for the two-dimensional gas dynamics systems. SIAM J. Math. Anal. 21(3), 593–630 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea grant funded by the Ministry of Education (2015R1D1A1A01059837). The authors would like to thank the anonymous referees for their valuable comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Yeol Jung.

Additional information

Communicated by: Jan Hesthaven

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, CY., Nguyen, T.B. Fine structures for the solutions of the two-dimensional Riemann problems by high-order WENO schemes. Adv Comput Math 44, 147–174 (2018). https://doi.org/10.1007/s10444-017-9538-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-017-9538-8

Keywords

Mathematics Subject Classification (2010)

Navigation