Skip to main content
Log in

High-Resolution Viscous Terms Discretization and ILW Solid Wall Boundary Treatment for the Navier–Stokes Equations

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Robust numerical methods for CFD applications, such as WENO schemes, quickly evolved in the past few decades. Together with the Inverse Lax–Wendroff (ILW) procedure, WENO ideas were also applied in the boundary treatment. Those methods are known for their high-resolution property, i.e., good representation of nonlinear phenomena, which is an important property in solving challenging engineering problems. In light of that, the objective of this work is to present a review of well-established high-resolution numerical methods to solve the Euler equations and adapt the Navier–Stokes viscous terms discretization and boundary treatment. To test the modifications, we employed the positivity-preserving Lax–Friedrichs splitting, multi-resolution WENO scheme, third-order strong stability preserving Runge–Kutta time discretization, and ILW boundary treatment. The first problems were simple flows with analytical solutions for accuracy tests. We also tested the accuracy with nontrivial phenomena in the vortex flow. Oblique shock and complicated flow structures were captured in the Rayleigh–Taylor instability and flow past a cylinder. We showed the discretization and boundary treatment can handle non-constant viscosity, are high-order, high-resolution, and behave similarly to the well-established numerical methods. Furthermore, the methods discussed here can preserve symmetry and no approximations regarding the boundary layer were made. Therefore, the discretization and boundary treatment can be considered when solving direct numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang X, Shu C-W (2012) Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. J Comput Phys 231(5):2245–2258

    Article  MathSciNet  Google Scholar 

  2. Lu J, Fang J, Tan S, Shu C-W, Zhang M (2016) Inverse Lax-Wendroff procedure for numerical boundary conditions of convection-diffusion equations. J Comput Phys 317:276–300

    Article  MathSciNet  Google Scholar 

  3. Fleischmann N, Adami S, Adams NA (2019) Numerical symmetry-preserving techniques for low-dissipation shock-capturing schemes. Comput Fluids 189:94–107

    Article  MathSciNet  Google Scholar 

  4. Zhu J, Shu C-W (2019) Convergence to steady-state solutions of the new type of high-order multi-resolution WENO schemes: a numerical study. Commun Appl Math Comput

  5. Lu J, Shu C-W, Tan S, Zhang M (2020) An inverse Lax-Wendroff procedure for hyperbolic conservation laws with changing wind direction on the boundary. J Comput Phys

  6. Borges R, Carmona M, Costa B, Don WS (2008) An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J Comput Phys 227:3191–3211

    Article  MathSciNet  Google Scholar 

  7. Acker F, de Borges RBR, Costa B (2016) An improved WENO-Z scheme. J Comput Phys 313:726–753

  8. Zhu J, Shu C-W (2018) A new type of multi-resolution WENO schemes with increasingly higher order of accuracy. J Comput Phys 375:659–683

    Article  MathSciNet  Google Scholar 

  9. Gao Z, Don WS, Li Z (2012) High order weighted essentially non-oscillation schemes for two-dimensional detonation wave simulations. J Sci Comput 53(1):80–101

    Article  MathSciNet  Google Scholar 

  10. Zhu C, Chen J, Wu J, Wang T (2019) Dynamic stall control of the wind turbine airfoil via single-row and double-row passive vortex generators. Energy 189:116272

    Article  Google Scholar 

  11. Verma S, Hadjadj A, Haidn O (2017) Origin of side-loads in a subscale truncated ideal contour nozzle. Aerospace Sci Technol 71:725–732

    Article  Google Scholar 

  12. Ivanov I and Kryukov I (2018) Numerical study of ways to prevent side loads in an over-expanded rocket nozzles during the launch stage, Acta Astronautica, vol. 163, pp. 196 – 201, 2019. Space Flight Safety

  13. Wang H, Jiang X, Chao Y, Li Q, Li M, Zheng W, Chen T (2019) Effects of leading edge slat on flow separation and aerodynamic performance of wind turbine. Energy 182:988–998

    Article  Google Scholar 

  14. Righi M, Pachidis V, Könözsy L (2020) On the prediction of the reverse flow and rotating stall characteristics of high-speed axial compressors using a three-dimensional through-flow code. Aerospace Sci Technol 99:105578

    Article  Google Scholar 

  15. Fatahian H, Salarian H, Nimvari ME, Khaleghinia J (2020) Computational fluid dynamics simulation of aerodynamic performance and flow separation by single element and slatted airfoils under rainfall conditions. Appl Math Model 83:683–702

    Article  MathSciNet  Google Scholar 

  16. Lee C, Choi K, Kim C, Han S (2020) Computational investigation of flow separation in a thrust-optimized parabolic nozzle during high-altitude testing. Comput Fluids 197:104363

    Article  Google Scholar 

  17. Liang C, Premasuthan S, Jameson A, Wang ZJ (2009) Large eddy simulation of compressible turbulent channel flow with spectral difference method. In: 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition

  18. Atak M, Larsson J, Gassner G, C. dieter Munz, (2014) DNS of a flat-plate supersonic boundary layer using the discontinuous Galerkin spectral element method. In: 44th AIAA fluid dynamics conference

  19. Rozema W, Verstappen RWCP, Veldman AEP, Kok JC (2020) Low-dissipation simulation methods and models for turbulent subsonic flow. Arch Comput Methods Eng 27:299–330

    Article  MathSciNet  Google Scholar 

  20. Holgate J, Skillen A, Craft T, Revell A (2019) A review of embedded large eddy simulation for internal flows. Arch Comput Methods Eng 26:865–882

    Article  MathSciNet  Google Scholar 

  21. Tan S, Wang C, Shu C-W, Ning J (2012) Efficient implementation of high order inverse Lax-Wendroff boundary treatment for conservation laws. J Comput Phys 231:2510–2527

    Article  MathSciNet  Google Scholar 

  22. Borges RB de R, da Silva NDP, Gomes FAA, Shu C-W, Tan S (2020) A sequel of inverse Lax-Wendroff high order wall boundary treatment for conservation laws. Arch Comput Methods Eng

  23. Bassi F, Rebay S (1997) High-order accurate discontinuous finite element solution of the 2d euler equations. J Comput Phys 138(2):251–285

    Article  MathSciNet  Google Scholar 

  24. Bassi F, Rebay S (1997) A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J Comput Phys 131(2):267–279

    Article  MathSciNet  Google Scholar 

  25. Shu C-W (1998) Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Berlin, Heidelberg: Springer, pp 325–432

  26. Hong Z, Ye Z, Ye K (2020) An improved WENO-Z scheme with symmetry-preserving mapping. Adv Aerodyn 2:18

    Article  Google Scholar 

  27. Spiegel SC, Huynh H, DeBonis JR (2015) A survey of the isentropic Euler vortex problem using high-order methods. In: 22nd AIAA computational fluid dynamics conference

Download references

Acknowledgements

We would like to thank Dr. Jianfang Lu from South China Normal University for valuable discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Dicati P. da Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of C.-W. Shu is partly supported by AFOSR grant FA9550-20-1-0055 and NSF grant DMS-2010107.

Appendix. Matrices and Vectors for the Rewritten Navier–Stokes Equations

Appendix. Matrices and Vectors for the Rewritten Navier–Stokes Equations

To rewrite the Navier–Stokes equations, we start expanding \(\varvec{S_1}\) and \(\varvec{S_2}\)

$$\begin{aligned}&\begin{aligned} & ({S_1}_x)_1=0,\\ &({S_1}_x)_2=\mu _x\left( \frac{4}{3}u_x-\frac{2}{3}v_y\right) +\mu \left( \frac{4}{3}u_{xx}-\frac{2}{3}v_{xy}\right) ,\\ & ({S_1}_x)_3=\mu _x\left( u_y+v_x\right) +\mu \left( u_{xy}+v_{xx}\right) ,\\ & ({S_1}_x)_4=u_x\mu \left( \frac{4}{3}u_x-\frac{2}{3}v_y\right) +v_x\mu \left( u_y+v_x\right) \\ &+\left( \frac{\mu \gamma }{Pr(\gamma -1)}\right) _x\left( \frac{p}{\rho }\right) _x+ u\mu _x\left( \frac{4}{3}u_x-\frac{2}{3}v_y\right) \\ &+ u\mu \left( \frac{4}{3}u_{xx}-\frac{2}{3}v_{xy}\right) +v\mu _x\left( u_y+v_x\right) +v\mu \left( u_{xy}+v_{xx}\right) \\ & +\frac{\mu \gamma }{Pr(\gamma -1)}\left( \frac{p_{xx}}{\rho }+\frac{2p\rho _x^2}{\rho ^3}-\frac{2p_x\rho _x}{\rho ^2}-\frac{p\rho _{xx}}{\rho ^2}\right) , \\ \end{aligned} \end{aligned}$$
(A.1)
$$\begin{aligned}& \begin{aligned} & ({S_2}_y)_1=0,\\ &({S_2}_y)_2=\mu _y\left( u_y+v_x\right) +\mu \left( u_{yy}+v_{xy}\right) ,\\ & ({S_2}_y)_3=\mu _y\left( \frac{4}{3}v_y-\frac{2}{3}u_x\right) +\mu \left( \frac{4}{3}v_{yy}-\frac{2}{3}u_{xy}\right) ,\\ & ({S_2}_y)_4=u_y\mu \left( u_y+v_x\right) +v_y\mu \left( \frac{4}{3}v_y-\frac{2}{3}u_x\right) \\ & + \left( \frac{\mu \gamma }{Pr(\gamma -1)}\right) _y\left( \frac{p}{\rho }\right) _y+u\mu _y\left( u_y+v_x\right) \\ &+ u\mu \left( u_{yy}+v_{xy}\right) +v\mu _y\left( \frac{4}{3}v_y-\frac{2}{3}u_x\right) +v\mu \left( \frac{4}{3}v_{yy}-\frac{2}{3}u_{xy}\right) \\ &+ \frac{\mu \gamma }{Pr(\gamma -1)}\left( \frac{p_{yy}}{\rho }+\frac{2p\rho _y^2}{\rho ^3}-\frac{2p_y\rho _y}{\rho ^2}-\frac{p\rho _{yy}}{\rho ^2}\right) . \end{aligned} \end{aligned}$$
(A.2)

One should notice that we did not consider \(\mu\) and \(Pr\) as constants nor remove any terms. We now group terms containing first and second derivatives to the primitive variables, and nonlinear terms separately

$$\begin{aligned} \varvec{S_1}_x= & {} \varvec{\psi _1}{\varvec{W}}_{xy} +\varvec{\psi _2}{\varvec{W}}_{xx}+\varvec{N_{w1}},\end{aligned}$$
(A.3)
$$\begin{aligned} \varvec{S_2}_y= & {} \varvec{\psi _3}{\varvec{W}}_{xy} +\varvec{\psi _4}{\varvec{W}}_{yy}+\varvec{N_{w2}}, \end{aligned}$$
(A.4)

where

$$\begin{aligned} \varvec{\psi _1}= & {} \begin{bmatrix} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} -2\mu /3 &{} 0\\ 0 &{} \mu &{} 0 &{} 0\\ 0 &{} \mu v &{} -2\mu u/3 &{} 0\\ \end{bmatrix},\end{aligned}$$
(A.5)
$$\begin{aligned} \varvec{\psi _2}= & {} \begin{bmatrix} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 4\mu /3 &{} 0 &{} 0\\ 0 &{} 0 &{} \mu &{} 0\\ -\mu a^2/[\rho Pr(\gamma -1)] &{} 4\mu u/3 &{} \mu v &{} \mu \gamma /[\rho Pr(\gamma -1)] \end{bmatrix},\end{aligned}$$
(A.6)
$$\begin{aligned} \varvec{\psi _3}= & {} \begin{bmatrix} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} \mu &{} 0\\ 0 &{} -2\mu /3 &{} 0 &{} 0\\ 0 &{} -2\mu v/3 &{} \mu u &{} 0\\ \end{bmatrix},\end{aligned}$$
(A.7)
$$\begin{aligned} \varvec{\psi _4}= & {} \begin{bmatrix} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} \mu &{} 0 &{} 0\\ 0 &{} 0 &{} 4\mu /3 &{} 0\\ -\mu a^2/[\rho Pr(\gamma -1)] &{} \mu u &{} 4\mu v/3 &{} \mu \gamma /[\rho Pr(\gamma -1)] \end{bmatrix},\end{aligned}$$
(A.8)
$$\begin{aligned}&\begin{aligned} &(N_{w1})_1=0,\\ &(N_{w1})_2=\mu _x\left( \frac{4}{3}u_x-\frac{2}{3}v_y\right) ,\\ &(N_{w1})_3=\mu _x\left( u_y+v_x\right) ,\\ & (N_{w1})_4=u_x\mu \left( \frac{4}{3}u_x-\frac{2}{3}v_y\right) +v_x\mu \left( u_y+v_x\right) \\ &+\left( \frac{\mu \gamma }{Pr(\gamma -1)}\right) _x\left( \frac{p}{\rho }\right) _x+u\mu _x\left( \frac{4}{3}u_x-\frac{2}{3}v_y\right) \\ & + v\mu _x\left( u_y+v_x\right) +\frac{\mu \gamma }{Pr(\gamma -1)}\left( \frac{2p\rho _x^2}{\rho ^3}-\frac{2p_x\rho _x}{\rho ^2}\right) ,\\ \end{aligned}\end{aligned}$$
(A.9)
$$\begin{aligned}&\begin{aligned} & (N_{w2})_1=0,\\ &(N_{w2})_2=\mu _y\left( u_y+v_x\right) ,\\ &(N_{w2})_3=\mu _y\left( \frac{4}{3}v_y-\frac{2}{3}u_x\right) ,\\ &(N_{w2})_4=u_y\mu \left( u_y+v_x\right) +v_y\mu \left( \frac{4}{3}v_y-\frac{2}{3}u_x\right) \\ &+\left( \frac{\mu \gamma }{Pr(\gamma -1)}\right) _y\left( \frac{p}{\rho }\right) _y+u\mu _y\left( u_y+v_x\right) \\& + v\mu _y\left( \frac{4}{3}v_y-\frac{2}{3}u_x\right) +\frac{\mu \gamma }{Pr(\gamma -1)}\left( \frac{2p\rho _y^2}{\rho ^3}-\frac{2p_y\rho _y}{\rho ^2}\right) . \end{aligned} \end{aligned}$$
(A.10)

The boundary treatment is based on conservative variables, we then transform to the latter with

$$\begin{aligned}&\begin{aligned} \varvec{S_1}_x & =\varvec{\psi _1}\left[ {\varvec{M}}{\varvec{U}}_y+\frac{\partial {\varvec{W}}}{\partial {\varvec{U}}}{\varvec{U}}_{xy}\right] \\ & \quad +\varvec{\psi _2}\left[ {\varvec{M}}{\varvec{U}}_x+\frac{\partial {\varvec{W}}}{\partial {\varvec{U}}}{\varvec{U}}_{xx}\right] +\varvec{N_{w1}}, \end{aligned}\end{aligned}$$
(A.11)
$$\begin{aligned}&\begin{aligned} \varvec{S_2}_y & =\varvec{\psi _3}\left[ {\varvec{O}}{\varvec{U}}_x+\frac{\partial {\varvec{W}}}{\partial {\varvec{U}}}{\varvec{U}}_{xy}\right] \\ &\quad +\varvec{\psi _4}\left[ {\varvec{O}}{\varvec{U}}_y+\frac{\partial {\varvec{W}}}{\partial {\varvec{U}}}{\varvec{U}}_{yy}\right] +\varvec{N_{w2}}, \end{aligned}\end{aligned}$$
(A.12)
$$\begin{aligned}&\begin{aligned} {\varvec{M}}=\begin{bmatrix} 0 &{} 0 &{} 0 &{} 0\\ \displaystyle \frac{\rho _x u-\rho u_x}{\rho ^2} &{} \displaystyle -\frac{\rho _x}{\rho ^2} &{} 0 &{} 0 \\ \displaystyle \frac{\rho _x v-\rho v_x}{\rho ^2} &{} 0 &{} \displaystyle -\frac{\rho _x}{\rho ^2} &{} 0 \\ \left( uu_x+vv_x\right) (\gamma -1) &{} -u_x(\gamma -1) &{} -v_x(\gamma -1) &{} 0 \\ \end{bmatrix},\\ {\varvec{O}}=\begin{bmatrix} 0 &{} 0 &{} 0 &{} 0\\ \frac{\rho _y u-\rho u_y}{\rho ^2} &{} \displaystyle -\frac{\rho _y}{\rho ^2} &{} 0 &{} 0 \\ \frac{\rho _y v-\rho v_y}{\rho ^2} &{} 0 &{} \displaystyle -\frac{\rho _y}{\rho ^2} &{} 0 \\ \left( uu_y+vv_y\right) (\gamma -1) &{} -u_y(\gamma -1) &{} -v_y(\gamma -1) &{} 0 \\ \end{bmatrix}. \end{aligned} \end{aligned}$$
(A.13)

We finally write the viscous terms as

$$\begin{aligned} \varvec{S_1}_x= & \, \varvec{\psi _1}\frac{\partial {\varvec{W}}}{\partial {\varvec{U}}}{\varvec{U}}_{xy} +\varvec{\psi _2}\frac{\partial {\varvec{W}}}{\partial {\varvec{U}}}{\varvec{U}}_{xx}+\varvec{N_{1}}, \end{aligned}$$
(A.14)
$$\begin{aligned} \varvec{S_2}_y= & \, \varvec{\psi _3}\frac{\partial {\varvec{W}}}{\partial {\varvec{U}}}{\varvec{U}}_{xy} +\varvec{\psi _4}\frac{\partial {\varvec{W}}}{\partial {\varvec{U}}}{\varvec{U}}_{yy}+\varvec{N_{2}}, \end{aligned}$$
(A.15)

with

$$\begin{aligned} \varvec{N_1}= & \, \varvec{\psi _1}{\varvec{M}}{\varvec{U}}_y+\varvec{\psi _2}{\varvec{M}}{\varvec{U}}_x+\varvec{N_{w1}}, \nonumber \\ \varvec{N_2}= & {} \varvec{\psi _3}{\varvec{O}}{\varvec{U}}_x+\varvec{\psi _4}{\varvec{O}}{\varvec{U}}_y+\varvec{N_{w2}} . \end{aligned}$$
(A.16)

Introducing four new terms, we write

$$\begin{aligned} \varvec{S_1}_x+\varvec{S_2}_y= \, \varvec{\Psi _1}{\varvec{U}}_{xx} +\varvec{\Psi _2}{\varvec{U}}_{yy}+\varvec{\Psi _3}{\varvec{U}}_{xy} +{\varvec{N}} \end{aligned}$$
(A.17)

with

$$\begin{aligned} \varvec{\Psi _1}= & \, \varvec{\psi _2}\frac{\partial {\varvec{W}}}{\partial {\varvec{U}}}, \end{aligned}$$
(A.18)
$$\begin{aligned} \varvec{\Psi _2}= & \, \varvec{\psi _4}\frac{\partial {\varvec{W}}}{\partial {\varvec{U}}}, \end{aligned}$$
(A.19)
$$\begin{aligned} \varvec{\Psi _3}= & \, \varvec{\psi _1}\frac{\partial {\varvec{W}}}{\partial {\varvec{U}}} +\varvec{\psi _3}\frac{\partial {\varvec{W}}}{\partial {\varvec{U}}}, \end{aligned}$$
(A.20)
$$\begin{aligned} {\varvec{N}}= & \, \varvec{N_1}+\varvec{N_2}. \end{aligned}$$
(A.21)

To apply the wall boundary treatment, we need to diagonalize the matrix \(\varvec{\Psi _2}\). We choose the scaling factors in a way that the resulting eigenvectors are similar to those employed in [2], i.e.,

$$\begin{aligned} {\varvec{L}}_d= & {} \begin{bmatrix} \dfrac{1}{2\gamma } &{} 0 &{} 0 &{} 0 \\ -u &{} 1 &{} 0 &{} 0 \\ \dfrac{v}{2a} &{} 0 &{} -\dfrac{1}{2a} &{} 0 \\ \dfrac{q(\gamma -1)}{2a^2}-\dfrac{1}{2\gamma } &{} -\dfrac{u\left( \gamma -1\right) }{2a^2} &{} -\dfrac{v\left( \gamma -1\right) }{2a^2} &{} \dfrac{\gamma -1}{2a^2} \\ \end{bmatrix},\end{aligned}$$
(A.22)
$$\begin{aligned} {\varvec{R}}_d= & {} \begin{bmatrix} 2\gamma &{} 0 &{} 0 &{} 0\\ 2u\gamma &{} 1 &{} 0 &{} 0\\ 2v\gamma &{} 0 &{} -2a &{} 0\\ 2q\gamma +\dfrac{2a^2}{\gamma -1} &{} u &{} -2av &{} \dfrac{2a^2}{\gamma -1}\\ \end{bmatrix}, \end{aligned}$$
(A.23)

with \(q=(u^2+v^2)/2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, R.B.d.R., da Silva, N.D.P., Gomes, F.A.A. et al. High-Resolution Viscous Terms Discretization and ILW Solid Wall Boundary Treatment for the Navier–Stokes Equations. Arch Computat Methods Eng 29, 2383–2395 (2022). https://doi.org/10.1007/s11831-021-09657-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09657-9

Keywords

Navigation