Skip to main content

Advertisement

Log in

Effects of Varied Stimulation Parameters on Adipose-Derived Stem Cell Response to Low-Level Electrical Fields

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Exogenous electrical fields have been explored in regenerative medicine to increase cellular expression of pro-regenerative growth factors. Adipose-derived stem cells (ASCs) are attractive for regenerative applications, specifically for neural repair. Little is known about the relationship between low-level electrical stimulation (ES) and ASC regenerative potentiation. In this work, patterns of ASC expression and secretion of growth factors (i.e., secretome) were explored across a range of ES parameters. ASCs were stimulated with low-level stimulation (20 mV/mm) at varied pulse frequencies, durations, and with alternating versus direct current. Frequency and duration had the most significant effects on growth factor expression. While a range of stimulation frequencies (1, 20, 1000 Hz) applied intermittently (1 h × 3 days) induced upregulation of general wound healing factors, neural-specific factors were only increased at 1 Hz. Moreover, the most optimal expression of neural growth factors was achieved when ASCs were exposed to 1 Hz pulses continuously for 24 h. In evaluation of secretome, apparent inconsistencies were observed across biological replications. Nonetheless, ASC secretome (from 1 Hz, 24 h ES) caused significant increase in neurite extension compared to non-stimulated control. Overall, ASCs are sensitive to ES parameters at low field strengths, notably pulse frequency and stimulation duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bertucci, C., R. Koppes, C. Dumont, and A. Koppes. Neural responses to electrical stimulation in 2D and 3D in vitro environments. Brain Res. Bull. 152:265–284, 2019.

    Article  Google Scholar 

  2. Beugels, J., D. G. M. Molin, D. R. M. G. Ophelders, T. Rutten, L. Kessels, N. Kloosterboer, A. A. P. de Grzymala, B. W. W. Kramer, R. R. W. J. van der Hulst, and T. G. A. M. Wolfs. Electrical stimulation promotes the angiogenic potential of adipose-derived stem cells. Sci. Rep. 9:12076, 2019.

    Article  Google Scholar 

  3. Carter, K., H. J. Lee, K. S. Na, G. M. Fernandes-Cunha, I. J. Blanco, A. Djalilian, and D. Myung. Characterizing the impact of 2D and 3D culture conditions on the therapeutic effects of human mesenchymal stem cell secretome on corneal wound healing in vitro and ex vivo. Acta Biomaterialia. 99:247–257, 2019. https://doi.org/10.1016/j.actbio.2019.09.022.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Elzinga, K., N. Tyreman, A. Ladak, B. Savaryn, J. Olson, and T. Gordon. Brief electrical stimulation improves nerve regeneration after delayed repair in Sprague Dawley rats. Exp. Neurol. 269:142–153, 2015.

    Article  Google Scholar 

  5. Forostyak, O., O. Butenko, M. Anderova, S. Forostyak, E. Sykova, A. Verkhratsky, and G. Dayanithi. Specific profiles of ion channels and ionotropic receptors define adipose- and bone marrow derived stromal cells. Stem Cell Res. 16:622–634, 2016.

    Article  CAS  Google Scholar 

  6. Gellner, A.-K., J. Reis, and B. Fritsch. Glia: a neglected player in non-invasive direct current brain stimulation. Front. Cell. Neurosci. 10:188, 2016.

    Article  Google Scholar 

  7. Gordon, T. Electrical stimulation to enhance axon regeneration after peripheral nerve injuries in animal models and humans. Neurotherapeutics. 13:295–310, 2016.

    Article  Google Scholar 

  8. Gordon, T., T. M. Brushart, and K. M. Chan. Augmenting nerve regeneration with electrical stimulation. Neurol. Res. 30:1012–1022, 2008.

    Article  CAS  Google Scholar 

  9. Gordon, T., O. A. R. Sulaiman, and A. Ladak. Chapter 24 electrical stimulation for improving nerve regeneration: where do we stand? Int. Rev. Neurobiol. 87:433–444, 2009.

    Article  Google Scholar 

  10. Huang, J., Z. Ye, X. Hu, L. Lu, and Z. Luo. Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann cells. Glia. 58:622–631, 2010.

    Article  Google Scholar 

  11. Huang, Y., Y. Li, J. Chen, H. Zhou, and S. Tan. Electrical stimulation elicits neural stem cells activation: new perspectives in CNS repair. Front. Hum. Neurosci. 9:586, 2015.

    PubMed  PubMed Central  Google Scholar 

  12. Ike, I. S., I. Sigalas, and S. Iyuke. Understanding performance limitation and suppression of leakage current or self-discharge in electrochemical capacitors: a review. Phys. Chem. Chem. Phys. 18:661–680, 2015.

    Article  Google Scholar 

  13. Jack, A. S., C. Hurd, J. Martin, and K. Fouad. Electrical stimulation as a tool to promote plasticity of the injured spinal cord. J. Neurotrauma. 37:1933–1953, 2020.

    Article  Google Scholar 

  14. Kingham, P. J., M. K. Kolar, L. N. Novikova, L. N. Novikov, and M. Wiberg. Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair. Stem Cells Dev. 23:741–754, 2014.

    Article  CAS  Google Scholar 

  15. Koppes, A. N., A. L. Nordberg, G. M. Paolillo, N. M. Goodsell, H. A. Darwish, L. Zhang, and D. M. Thompson. Electrical stimulation of schwann cells promotes sustained increases in neurite outgrowth. Tissue Eng. Part A. 20:494–506, 2014.

    CAS  PubMed  Google Scholar 

  16. Koppes, A. N., A. M. Seggio, and D. M. Thompson. Neurite outgrowth is significantly increased by the simultaneous presentation of Schwann cells and moderate exogenous electric fields. J. Neural Eng.8(4):046023, 2011. https://doi.org/10.1088/1741-2560/8/4/046023.

    Article  PubMed  Google Scholar 

  17. Kovalevich, J., and D. Langford. Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol. Biol. 1078:9–21, 2013. https://doi.org/10.1007/978-1-62703-640-5_2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leppik, L., H. Zhihua, S. Mobini, V. Thottakkattumana Parameswaran, M. Eischen-Loges, A. Slavici, J. Helbing, L. Pindur, K. M. C. Oliveira, M. B. Bhavsar, L. Hudak, D. Henrich, and J. H. Barker. Combining electrical stimulation and tissue engineering to treat large bone defects in a rat model. Sci. Rep. 8:6307, 2018.

    Article  Google Scholar 

  19. Lopatina, T., N. Kalinina, M. Karagyaur, D. Stambolsky, K. Rubina, A. Revischin, G. Pavlova, Y. Parfyonova, and V. Tkachuk. Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth De Novo. PLoS ONE. 6:e17899, 2011.

    Article  CAS  Google Scholar 

  20. Messerli, M. A., and D. M. Graham. Extracellular electrical fields direct wound healing and regeneration. Biol. Bull. 221(1):79–92, 2011.

    Article  CAS  Google Scholar 

  21. Mobini, S., L. Leppik, and J. H. Barker. Direct current electrical stimulation chamber for treating cells in vitro. BioTechniques. 60:95–98, 2016.

    Article  CAS  Google Scholar 

  22. Mobini, S., L. Leppik, V. ThottakkattumanaParameswaran, and J. H. Barker. In vitro effect of direct current electrical stimulation on rat mesenchymal stem cells. PeerJ. 5:e2821, 2017.

    Article  Google Scholar 

  23. Mobini, S., Ü. -L. Talts, R. Xue, N. J. Cassidy, and S. H. Cartmell. Electrical stimulation changes human mesenchymal stem cells orientation and cytoskeleton organization. J. Biomater. Tissue Eng. 7(9):839–933, 2017.

    Article  Google Scholar 

  24. Park, S.-R., J.-W. Kim, H.-S. Jun, J. Y. Roh, H.-Y. Lee, and I.-S. Hong. Stem cell secretome and its effect on cellular mechanisms relevant to wound healing. Mol. Ther. 26:606–617, 2018.

    Article  CAS  Google Scholar 

  25. Quan, X., L. Huang, Y. Yang, T. Ma, Z. Liu, J. Ge, J. Huang, and Z. Luo. Potential mechanism of neurite outgrowth enhanced by electrical stimulation: involvement of MicroRNA-363-5p targeting DCLK1 expression in rat. Neurochem. Res. 42:513–525, 2017.

    Article  CAS  Google Scholar 

  26. Rackauskas, G., E. Saygili, O. R. Rana, E. Saygili, C. Gemein, A. Laucevicius, A. Aidietis, G. Marinskis, P. Serpytis, J. Plisiene, D. H. Pauza, and P. Schauerte. Subthreshold high-frequency electrical field stimulation induces VEGF expression in cardiomyocytes. Cell Transpl. 24:1653–1659, 2015.

    Article  Google Scholar 

  27. Ribeiro, T. O., B. M. Silveira, M. C. Meira, A. C. O. Carreira, M. C. Sogayar, R. Meyer, and V. Fortuna. Investigating the potential of the secretome of mesenchymal stem cells derived from sickle cell disease patients. PLoS ONE. 14:e0222093, 2019.

    Article  CAS  Google Scholar 

  28. Ross Macdonald, J., and C. A. Barlow. Theory of double-layer differential capacitance in electrolytes. J. Chem. Phys. 36:3062, 1962.

    Article  Google Scholar 

  29. Salgado, J. A., L. R. Reis, N. Sousa, and M. J. Gimble. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther. 5:103–110, 2010.

    Article  CAS  Google Scholar 

  30. Tandon, N., B. Goh, A. Marsano, P. H. G. Chao, C. Montouri-Sorrentino, J. Gimble, and G. Vunjak-Novakovic. Alignment and elongation of human adipose-derived stem cells in response to direct-current electrical stimulation. Conference Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society 1:6517–6521, 2009

  31. Tang-Schomer, M. D. 3D axon growth by exogenous electrical stimulus and soluble factors. Brain Res. 1678:288–296, 2018.

    Article  CAS  Google Scholar 

  32. Thakral, G., J. LaFontaine, B. Najafi, T. K. Talal, P. Kim, and L. A. Lavery. Electrical stimulation to accelerate wound healing. Diabet. Foot Ankle. 4:22081, 2013.

    Article  Google Scholar 

  33. Vöröslakos, M., Y. Takeuchi, K. Brinyiczki, T. Zombori, A. Oliva, A. Fernández-Ruiz, G. Kozák, Z. T. Kincses, B. Iványi, G. Buzsáki, and A. Berényi. Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nat. Commun. 9:483, 2018.

    Article  Google Scholar 

  34. Wilhelm, J. C., M. Xu, D. Cucoranu, S. Chmielewski, T. Holmes, K. S. Lau, G. J. Bassell, and A. W. English. Cooperative roles of BDNF expression in neurons and schwann cells are modulated by exercise to facilitate nerve regeneration. J. Neurosci. 32:5002–5009, 2012.

    Article  CAS  Google Scholar 

  35. Willand, M. P., E. Rosa, B. Michalski, J. J. Zhang, T. Gordon, M. Fahnestock, and G. H. Borschel. Electrical muscle stimulation elevates intramuscular BDNF and GDNF mRNA following peripheral nerve injury and repair in rats. Neuroscience. 334:93–104, 2016.

    Article  CAS  Google Scholar 

  36. Yang, G., H. Long, X. Ren, K. Ma, Z. Xiao, Y. Wang, and Y. Guo. Regulation of adipose-tissue-derived stromal cell orientation and motility in 2D- and 3D-cultures by direct-current electrical field. Dev. Growth Differ. 59:70–82, 2017.

    Article  CAS  Google Scholar 

  37. Zhang, J., M. Li, E. T. Kang, and K. G. Neoh. Electrical stimulation of adipose-derived mesenchymal stem cells in conductive scaffolds and the roles of voltage-gated ion channels. Acta Biomaterialia. 32:46–56, 2016.

    Article  Google Scholar 

  38. Zhang, J., K. G. Neoh, and E. T. Kang. Electrical stimulation of adipose-derived mesenchymal stem cells and endothelial cells co-cultured in a conductive scaffold for potential orthopaedic applications. J. Tissue Eng. Regen. Med. 12:878–889, 2017.

    Article  Google Scholar 

  39. Zhou, W. T., Y. Qin Ni, Z. Bing Jin, M. Zhang, J. Hong Wu, Y. Zhu, G. Zhi Xu, and D. Kang Gan. Electrical stimulation ameliorates light-induced photoreceptor degeneration in vitro via suppressing the proinflammatory effect of microglia and enhancing the neurotrophic potential of Müller cells. Exp. Neurol. 238:192–208, 2012.

    Article  CAS  Google Scholar 

  40. Zhu, R., Z. Sun, C. Li, S. Ramakrishna, K. Chiu, and L. He. Electrical stimulation affects neural stem cell fate and function in vitro. Exp Neurol. 319:112963, 2019.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. Keith March (UF Medicine) for discussions on this work. We also thank the Thermo Fisher Aspire program for providing complimentary ELISAs. Funding for this work was provided by NIH R21 NS111398.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine E. Schmidt.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 837 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hlavac, N., Bousalis, D., Ahmad, R.N. et al. Effects of Varied Stimulation Parameters on Adipose-Derived Stem Cell Response to Low-Level Electrical Fields. Ann Biomed Eng 49, 3401–3411 (2021). https://doi.org/10.1007/s10439-021-02875-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-021-02875-z

Keywords

Navigation