Skip to main content
Log in

A Dual-Mode Bioreactor System for Tissue Engineered Vascular Models

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In the past decades, vascular tissue engineering has made great strides towards bringing engineered vascular tissues to the clinics and, in parallel, obtaining in-lab tools for basic research. Herein, we propose the design of a novel dual-mode bioreactor, useful for the fabrication (construct mode) and in vitro stimulation (culture mode) of collagen-based tubular constructs. Collagen-based gels laden with smooth muscle cells (SMCs) were molded directly within the bioreactor culture chamber. Based on a systematic characterization of the bioreactor culture mode, constructs were subjected to 10% cyclic strain at 0.5 Hz for 5 days. The effects of cyclic stimulation on matrix re-arrangement and biomechanical/viscoelastic properties were examined and compared vs. statically cultured constructs. A thorough comparison of cell response in terms of cell localization and expression of contractile phenotypic markers was carried out as well. We found that cyclic stimulation promoted cell-driven collagen matrix bi-axial compaction, enhancing the mechanical strength of strained samples with respect to static controls. Moreover, cyclic strain positively affected SMC behavior: cells maintained their contractile phenotype and spread uniformly throughout the whole wall thickness. Conversely, static culture induced a noticeable polarization of cell distribution to the outer rim of the constructs and a sharp reduction in total cell density. Overall, coupling the use of a novel dual-mode bioreactor with engineered collagen-gel-based tubular constructs demonstrated to be an interesting technology to investigate the modulation of cell and tissue behavior under controlled mechanically conditioned in vitro maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Akhyari, P., P. W. Fedak, R. D. Weisel, T. Y. Lee, S. Verma, D. A. Mickle, and R. K. Li. Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation 106(12 Suppl 1):I137–I142, 2002.

    PubMed  Google Scholar 

  2. ANSI/AAMI/ISO 7198:1998/2001. Cardiovascular implants—tubular vascular prostheses (2001).

  3. Berglund, J. D., R. M. Nerem, and A. Sambanis. Incorporation of intact elastin scaffolds in tissue-engineered collagen-based vascular grafts. Tissue Eng. 10(9–10):1526–1535, 2004. doi:10.1089/ten.2004.10.1526.

    Article  CAS  PubMed  Google Scholar 

  4. Berglund, J. D., R. M. Nerem, and A. Sambanis. Viscoelastic testing methodologies for tissue engineered blood vessels. J. Biomech. Eng. 127(7):1176–1184, 2005.

    Article  PubMed  Google Scholar 

  5. Bjork, J. W., and R. T. Tranquillo. Transmural flow bioreactor for vascular tissue engineering. Biotechnol. Bioeng. 104(6):1197–1206, 2009. doi:10.1002/bit.22475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boccafoschi, F., M. Bosetti, C. Mosca, D. Mantovani, and M. Cannas. The role of shear stress on mechanically stimulated engineered vascular substitutes: influence on mechanical and biological properties. J. Tissue Eng. Regen. Med. 6(1):60–67, 2012. doi:10.1002/term.398.

    Article  CAS  PubMed  Google Scholar 

  7. Bono, N., D. Pezzoli, L. Levesque, C. Loy, G. Candiani, G. B. Fiore, and D. Mantovani. Unraveling the role of mechanical stimulation on smooth muscle cells: a comparative study between 2D and 3D models. Biotechnol. Bioeng. 2016. doi:10.1002/bit.25979.

    PubMed  Google Scholar 

  8. Brown, D. A., W. R. MacLellan, H. Laks, J. C. Dunn, B. M. Wu, and R. E. Beygui. Analysis of oxygen transport in a diffusion-limited model of engineered heart tissue. Biotechnol. Bioeng. 97(4):962–975, 2007. doi:10.1002/bit.21295.

    Article  CAS  PubMed  Google Scholar 

  9. Butler, D. L., S. A. Goldstein, and F. Guilak. Functional tissue engineering: the role of biomechanics. J. Biomech. Eng. 122(6):570–575, 2000.

    Article  CAS  PubMed  Google Scholar 

  10. Cardinal, K. O., G. T. Bonnema, H. Hofer, J. K. Barton, and S. K. Williams. Tissue-engineered vascular grafts as in vitro blood vessel mimics for the evaluation of endothelialization of intravascular devices. Tissue Eng. 12(12):3431–3438, 2006. doi:10.1089/ten.2006.12.3431.

    Article  PubMed  Google Scholar 

  11. Chen, H. C., and Y. C. Hu. Bioreactors for tissue engineering. Biotechnol. Lett. 28(18):1415–1423, 2006. doi:10.1007/s10529-006-9111-x.

    Article  CAS  PubMed  Google Scholar 

  12. D’ Amore, A., J. S. Soares, J. A. Stella, W. Zhang, N. J. Amoroso, J. E. Mayer, Jr., W. R. Wagner, and M. S. Sacks. Large strain stimulation promotes extracellular matrix production and stiffness in an elastomeric scaffold model. J. Mech. Behav. Biomed. Mater. 62:619–635, 2016. doi:10.1016/j.jmbbm.2016.05.005.

    Article  Google Scholar 

  13. Dahl, S. L., J. Koh, V. Prabhakar, and L. E. Niklason. Decellularized native and engineered arterial scaffolds for transplantation. Cell Transpl. 12(6):659–666, 2003.

    Article  Google Scholar 

  14. Dahl, S. L., C. Rhim, Y. C. Song, and L. E. Niklason. Mechanical properties and compositions of tissue engineered and native arteries. Ann. Biomed. Eng. 35(3):348–355, 2007. doi:10.1007/s10439-006-9226-1.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Diebolt, M., L. Germain, F. A. Auger, and R. Andriantsitohaina. Mechanism of potentiation by polyphenols of contraction in human vein-engineered media. Am. J. Physiol. Heart Circ. Physiol. 288(6):H2918–H2924, 2005. doi:10.1152/ajpheart.01194.2004.

    Article  CAS  PubMed  Google Scholar 

  16. Engelmayr, Jr, G. C., D. K. Hildebrand, F. W. Sutherland, J. E. Mayer, Jr, and M. S. Sacks. A novel bioreactor for the dynamic flexural stimulation of tissue engineered heart valve biomaterials. Biomaterials 24(14):2523–2532, 2003.

    Article  CAS  PubMed  Google Scholar 

  17. Engelmayr, Jr, G. C., E. Rabkin, F. W. Sutherland, F. J. Schoen, J. E. Mayer, Jr, and M. S. Sacks. The independent role of cyclic flexure in the early in vitro development of an engineered heart valve tissue. Biomaterials 26(2):175–187, 2005. doi:10.1016/j.biomaterials.2004.02.035.

    Article  CAS  PubMed  Google Scholar 

  18. Engelmayr, Jr, G. C., L. Soletti, S. C. Vigmostad, S. G. Budilarto, W. J. Federspiel, K. B. Chandran, D. A. Vorp, and M. S. Sacks. A novel flex-stretch-flow bioreactor for the study of engineered heart valve tissue mechanobiology. Ann. Biomed. Eng. 36(5):700–712, 2008. doi:10.1007/s10439-008-9447-6.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fernandez, C. E., R. W. Yen, S. M. Perez, H. W. Bedell, T. J. Povsic, W. M. Reichert, and G. A. Truskey. Human vascular microphysiological system for in vitro drug screening. Scientific reports 6:21579, 2016. doi:10.1038/srep21579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fung, Y. C., and S. Q. Liu. Determination of the mechanical properties of the different layers of blood vessels in vivo. Proc. Natl Acad. Sci. USA 92(6):2169–2173, 1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gauvin, R., T. Ahsan, D. Larouche, P. Levesque, J. Dube, F. A. Auger, R. M. Nerem, and L. Germain. A novel single-step self-assembly approach for the fabrication of tissue-engineered vascular constructs. Tissue Eng. Part A 16(5):1737–1747, 2010. doi:10.1089/ten.TEA.2009.0313.

    Article  CAS  PubMed  Google Scholar 

  22. Gauvin, R., M. Guillemette, T. Galbraith, J. M. Bourget, D. Larouche, H. Marcoux, D. Aube, C. Hayward, F. A. Auger, and L. Germain. Mechanical properties of tissue-engineered vascular constructs produced using arterial or venous cells. Tissue Eng. Part A 17(15–16):2049–2059, 2011. doi:10.1089/ten.TEA.2010.0613.

    Article  PubMed  Google Scholar 

  23. Gibbons, M. C., M. A. Foley, and K. O. Cardinal. Thinking inside the box: keeping tissue-engineered constructs in vitro for use as preclinical models. Tissue Eng. Part B Rev 19(1):14–30, 2013. doi:10.1089/ten.TEB.2012.0305.

    Article  CAS  PubMed  Google Scholar 

  24. Gui, L., M. J. Boyle, Y. M. Kamin, A. H. Huang, B. C. Starcher, C. A. Miller, M. J. Vishnevetsky, and L. E. Niklason. Construction of tissue-engineered small-diameter vascular grafts in fibrin scaffolds in 30 days. Tissue Eng. Part A 20(9–10):1499–1507, 2014. doi:10.1089/ten.TEA.2013.0263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gwyther, T. A., J. Z. Hu, A. G. Christakis, J. K. Skorinko, S. M. Shaw, K. L. Billiar, and M. W. Rolle. Engineered vascular tissue fabricated from aggregated smooth muscle cells. Cells Tissues Organs 194(1):13–24, 2011. doi:10.1159/000322554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hamza, L. H., Q. Dang, X. Lu, A. Mian, S. Molloi, and G. S. Kassab. Effect of passive myocardium on the compliance of porcine coronary arteries. Am. J. Physiol. Heart Circ. Physiol. 285(2):H653–H660, 2003. doi:10.1152/ajpheart.00090.2003.

    Article  CAS  PubMed  Google Scholar 

  27. Huang, A. H., Y. U. Lee, E. A. Calle, M. Boyle, B. C. Starcher, J. D. Humphrey, and L. E. Niklason. Design and use of a novel bioreactor for regeneration of biaxially stretched tissue-engineered vessels. Tissue Eng. Part C Methods 21(8):841–851, 2015. doi:10.1089/ten.TEC.2014.0287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang, A. H., and L. E. Niklason. Engineering of arteries in vitro. Cell. Mol. Life Sci. 71(11):2103–2118, 2014. doi:10.1007/s00018-013-1546-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Isenberg, B. C., and R. T. Tranquillo. Long-term cyclic distention enhances the mechanical properties of collagen-based media-equivalents. Ann. Biomed. Eng. 31(8):937–949, 2003.

    Article  PubMed  Google Scholar 

  30. Isenberg, B. C., C. Williams, and R. T. Tranquillo. Small-diameter artificial arteries engineered in vitro. Circ. Res. 98(1):25–35, 2006. doi:10.1161/01.RES.0000196867.12470.84.

    Article  CAS  PubMed  Google Scholar 

  31. Jin, G., G. H. Yang, and G. Kim. Tissue engineering bioreactor systems for applying physical and electrical stimulations to cells. J. Biomed. Mater. Res. Part B Appl. Biomater. 103(4):935–948, 2015. doi:10.1002/jbm.b.33268.

    Article  PubMed  Google Scholar 

  32. Kassab, G. S., and S. Molloi. Cross-sectional area and volume compliance of porcine left coronary arteries. Am. J. Physiol. Heart Circ. Physiol. 281(2):H623–H628, 2001.

    CAS  PubMed  Google Scholar 

  33. Kim, B. S., J. Nikolovski, J. Bonadio, E. Smiley, and D. J. Mooney. Engineered smooth muscle tissues: regulating cell phenotype with the scaffold. Exp. Cell Res. 251(2):318–328, 1999. doi:10.1006/excr.1999.4595.

    Article  CAS  PubMed  Google Scholar 

  34. L’Heureux, N., S. Paquet, R. Labbe, L. Germain, and F. A. Auger. A completely biological tissue-engineered human blood vessel. FASEB J. 12(1):47–56, 1998.

    PubMed  Google Scholar 

  35. L’Heureux, N., J. C. Stoclet, F. A. Auger, G. J. Lagaud, L. Germain, and R. Andriantsitohaina. A human tissue-engineered vascular media: a new model for pharmacological studies of contractile responses. FASEB J. 15(2):515–524, 2001. doi:10.1096/fj.00-0283com.

    Article  PubMed  Google Scholar 

  36. Martin, I., T. Smith, and D. Wendt. Bioreactor-based roadmap for the translation of tissue engineering strategies into clinical products. Trends Biotechnol. 27(9):495–502, 2009. doi:10.1016/j.tibtech.2009.06.002.

    Article  CAS  PubMed  Google Scholar 

  37. Martin, I., D. Wendt, and M. Heberer. The role of bioreactors in tissue engineering. Trends Biotechnol. 22(2):80–86, 2004. doi:10.1016/j.tibtech.2003.12.001.

    Article  CAS  PubMed  Google Scholar 

  38. Meghezi, S., F. Couet, P. Chevallier, and D. Mantovani. Effects of a pseudophysiological environment on the elastic and viscoelastic properties of collagen gels. Int. J. Biomater. 2012:319290, 2012. doi:10.1155/2012/319290.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Meghezi, S., D. G. Seifu, N. Bono, L. Unsworth, K. Mequanint, and D. Mantovani. Engineering 3D cellularized collagen gels for vascular tissue regeneration. J. Vis. Exp. 100:e52812, 2015. doi:10.3791/52812.

    Google Scholar 

  40. Mol, A., C. V. Bouten, G. Zund, C. I. Gunter, J. F. Visjager, M. I. Turina, F. P. Baaijens, and S. P. Hoerstrup. The relevance of large strains in functional tissue engineering of heart valves. Thorac. Cardiovasc. Surg 51(2):78–83, 2003. doi:10.1055/s-2003-38993.

    Article  CAS  PubMed  Google Scholar 

  41. Nieponice, A., L. Soletti, J. Guan, B. M. Deasy, J. Huard, W. R. Wagner, and D. A. Vorp. Development of a tissue-engineered vascular graft combining a biodegradable scaffold, muscle-derived stem cells and a rotational vacuum seeding technique. Biomaterials 29(7):825–833, 2008. doi:10.1016/j.biomaterials.2007.10.044.

    Article  CAS  PubMed  Google Scholar 

  42. Niklason, L. E., J. Gao, W. M. Abbott, K. K. Hirschi, S. Houser, R. Marini, and R. Langer. Functional arteries grown in vitro. Science 284(5413):489–493, 1999.

    Article  CAS  PubMed  Google Scholar 

  43. Niu, G., E. Sapoznik, and S. Soker. Bioengineered blood vessels. Expert Opin. Biol. Ther. 14(4):403–410, 2014. doi:10.1517/14712598.2014.880419.

    Article  CAS  PubMed  Google Scholar 

  44. Patel, D. J., J. C. Greenfield, Jr, W. G. Austen, A. G. Morrow, and D. L. Fry. Pressure-flow relationships in the ascending aorta and femoral artery of man. J. Appl. Physiol. 20(3):459–463, 1965.

    CAS  PubMed  Google Scholar 

  45. Piola, M., F. Prandi, N. Bono, M. Soncini, E. Penza, M. Agrifoglio, G. Polvani, M. Pesce, and G. B. Fiore. A compact and automated ex vivo vessel culture system for the pulsatile pressure conditioning of human saphenous veins. J. Tissue Eng. Regen. Med. 2013. doi:10.1002/term.1798.

    PubMed  Google Scholar 

  46. Piola, M., M. Ruiter, R. Vismara, V. Mastrullo, M. Agrifoglio, M. Zanobini, M. Pesce, M. Soncini, and G. B. Fiore. full mimicking of coronary hemodynamics for ex-vivo stimulation of human saphenous veins. Ann. Biomed. Eng. 2016. doi:10.1007/s10439-016-1747-7.

    Google Scholar 

  47. Piola, M., M. Soncini, F. Prandi, G. Polvani, G. Beniamino Fiore, and M. Pesce. Tools and procedures for ex vivo vein arterialization, preconditioning and tissue engineering: a step forward to translation to combat the consequences of vascular graft remodeling. Recent Pat. Cardiovasc. Drug Discov. 7(3):186–195, 2012.

    Article  CAS  PubMed  Google Scholar 

  48. Raimondi, M. T., F. Boschetti, L. Falcone, G. B. Fiore, A. Remuzzi, E. Marinoni, M. Marazzi, and R. Pietrabissa. Mechanobiology of engineered cartilage cultured under a quantified fluid-dynamic environment. Biomech. Model Mechanobiol. 1(1):69–82, 2002. doi:10.1007/s10237-002-0007-y.

    Article  CAS  PubMed  Google Scholar 

  49. Raimondi, M. T., M. Moretti, M. Cioffi, C. Giordano, F. Boschetti, K. Lagana, and R. Pietrabissa. The effect of hydrodynamic shear on 3D engineered chondrocyte systems subject to direct perfusion. Biorheology 43(3–4):215–222, 2006.

    PubMed  Google Scholar 

  50. Rajan, N., J. Habermehl, M. F. Cote, C. J. Doillon, and D. Mantovani. Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications. Nat. Protoc. 1(6):2753–2758, 2006. doi:10.1038/nprot.2006.430.

    Article  CAS  PubMed  Google Scholar 

  51. Seifu, D. G., A. Purnama, K. Mequanint, and D. Mantovani. Small-diameter vascular tissue engineering. Nat. Rev. Cardiol. 10(7):410–421, 2013. doi:10.1038/nrcardio.2013.77.

    Article  CAS  PubMed  Google Scholar 

  52. Seliktar, D., R. A. Black, R. P. Vito, and R. M. Nerem. Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann. Biomed. Eng. 28(4):351–362, 2000.

    Article  CAS  PubMed  Google Scholar 

  53. Seliktar, D., R. M. Nerem, and Z. S. Galis. The role of matrix metalloproteinase-2 in the remodeling of cell-seeded vascular constructs subjected to cyclic strain. Ann. Biomed. Eng. 29(11):923–934, 2001.

    Article  CAS  PubMed  Google Scholar 

  54. Soares, J. S., and M. S. Sacks. A triphasic constrained mixture model of engineered tissue formation under in vitro dynamic mechanical conditioning. Biomech. Model Mechanobiol. 15(2):293–316, 2016. doi:10.1007/s10237-015-0687-8.

    Article  PubMed  Google Scholar 

  55. Solan, A., S. L. Dahl, and L. E. Niklason. Effects of mechanical stretch on collagen and cross-linking in engineered blood vessels. Cell Transplant. 18(8):915–921, 2009. doi:10.3727/096368909X471161.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Stegemann, J. P., and R. M. Nerem. Altered response of vascular smooth muscle cells to exogenous biochemical stimulation in two- and three-dimensional culture. Exp. Cell Res. 283(2):146–155, 2003.

    Article  CAS  PubMed  Google Scholar 

  57. Stekelenburg, M., M. C. Rutten, L. H. Snoeckx, and F. P. Baaijens. Dynamic straining combined with fibrin gel cell seeding improves strength of tissue-engineered small-diameter vascular grafts. Tissue Eng. Part A 15(5):1081–1089, 2009. doi:10.1089/ten.tea.2008.0183.

    Article  CAS  PubMed  Google Scholar 

  58. Syedain, Z., J. Reimer, M. Lahti, J. Berry, S. Johnson, and R. T. Tranquillo. Tissue engineering of acellular vascular grafts capable of somatic growth in young lambs. Nat. Commun. 7:12951, 2016. doi:10.1038/ncomms12951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Syedain, Z. H., L. A. Meier, J. W. Bjork, A. Lee, and R. T. Tranquillo. Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring. Biomaterials 32(3):714–722, 2011. doi:10.1016/j.biomaterials.2010.09.019.

    Article  CAS  PubMed  Google Scholar 

  60. Teebken, O. E., A. Bader, G. Steinhoff, and A. Haverich. Tissue engineering of vascular grafts: human cell seeding of decellularised porcine matrix. Eur. J. Vasc. Endovasc. Surg. 19(4):381–386, 2000. doi:10.1053/ejvs.1999.1004.

    Article  CAS  PubMed  Google Scholar 

  61. Truskey, G.A. Advancing cardiovascular tissue engineering. F1000Research 5, 2016. doi:10.12688/f1000research.8237.1.

  62. Vismara, R., M. Soncini, G. Talo, L. Dainese, A. Guarino, A. Redaelli, and G. B. Fiore. A bioreactor with compliance monitoring for heart valve grafts. Ann. Biomed. Eng. 38(1):100–108, 2010. doi:10.1007/s10439-009-9803-1.

    Article  PubMed  Google Scholar 

  63. Weidenhamer, N. K., and R. T. Tranquillo. Influence of cyclic mechanical stretch and tissue constraints on cellular and collagen alignment in fibroblast-derived cell sheets. Tissue Eng. Part C Methods 19(5):386–395, 2013. doi:10.1089/ten.TEC.2012.0423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

NB was awarded of a Ph.D. Scholarship from the Italian Ministry of Education, completed with a mobility scholarship from the InterPolytechnic Doctoral School. This work was partially funded by the Natural Science and Engineering Research Council of Canada, the Canadian Institute for Health Research, the Heart and Stroke Foundation of Canada, the Canadian Foundation for Innovation, and the CHU de Quebec Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Beniamino Fiore.

Additional information

Associate Editor Kent Leach oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bono, N., Meghezi, S., Soncini, M. et al. A Dual-Mode Bioreactor System for Tissue Engineered Vascular Models. Ann Biomed Eng 45, 1496–1510 (2017). https://doi.org/10.1007/s10439-017-1813-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1813-9

Keywords

Navigation