Skip to main content
Log in

Survey of the mechanisms of power take-off (PTO) devices of wave energy converters

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Ocean wave energy conversion as one of the renewable clean energy sources is attracting the research interests of many people. This review introduces different types of power take-off (PTO) technology of wave energy converters. The novelty of this paper is to present advantages and disadvantages of the linear direct and indirect drive PTO devices for ocean wave energy conversion. The designs and optimizations of PTO systems of ocean wave energy converters have been studied from reviewing the recently published literature. The novel mechanical designs of the PTO systems have been compared and investigated in order to increase the energy harvesting efficiency.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Glendenning, I.: Ocean wave power. Appl. Energy 3(3), 197–222 (1977)

    Google Scholar 

  2. Falnes, J.: A review of wave-energy extraction. Mar. Struct. 20(4), 185–201 (2007)

    Google Scholar 

  3. International Renewable Energy Agency (IRENA). Wave Energy. Technology Brief (2014)

  4. Clément, A., McCullen, P., Falcão, A., et al.: Wave energy in Europe: current status and perspectives. Renewable Sustainable Energy Rev. 6(5), 405–431 (2002)

    Google Scholar 

  5. Pelc, R., Fujita, R.M.: Renewable energy from the ocean. Mar. Policy 26(6), 471–479 (2002)

    Google Scholar 

  6. Power buoys, The Economist. Available online https://www.economist.com/science-and-technology/2001/05/17/power-buoys. Accessed 19 May 2001

  7. Beatty, S.J., Hall, M., Buckham, B.J., et al.: Experimental and numerical comparisons of self-reacting point absorber wave energy converters in regular waves. Ocean Eng. 104, 370–386 (2015)

    Google Scholar 

  8. Falnes, J.: Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-energy Extraction. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  9. Evans, D.V., de Falcão, A.F.O.: Hydrodynamics of Ocean Wave-energy Utilization (No CONF-850741). Springer, New York (1985)

    Google Scholar 

  10. Morim, J., Cartwright, N., Etemad-Shahidi, A., et al.: A review of wave energy estimates for nearshore shelf waters off Australia. Int. J. Mar. Sci. 7, 57–70 (2014)

    Google Scholar 

  11. Illesinghe, S.J., Manasseh, R., Dargaville, R., et al.: Idealized design parameters of wave energy converters in a range of ocean wave climates. Int. J. Mar. Sci. 19, 55–69 (2017)

    Google Scholar 

  12. Barstow, S., Mørk, G., Lønseth, L., et al.: WorldWaves wave energy resource assessments from the deep ocean to the coast. J. Energy Power Eng. 5(8), 730–742 (2011)

    Google Scholar 

  13. Barstow, S., Mørk, G., Mollison, D., et al.: The wave energy resource. In: Cruz, J. (ed.) Ocean Wave Energy, pp. 93–132. Springer, Berlin (2008)

    Google Scholar 

  14. Chen, L.F., Zang, J., Hillis, A.J., et al.: Numerical investigation of wave–structure interaction using OpenFOAM. Ocean Eng. 88, 91–109 (2014)

    Google Scholar 

  15. Liu, Y., Xu, L., Zuo, L.: Design, modeling, lab, and field tests of a mechanical-motion-rectifier-based energy harvester using a ball-screw mechanism. IEEE ASME Trans. Mech. 22(5), 1933–1943 (2017)

    Google Scholar 

  16. Polinder, H., Mecrow, B.C., Jack, A.G., et al.: Conventional and TFPM linear generators for direct-drive wave energy conversion. IEEE Trans. Energy Convers. 20(2), 260–267 (2005)

    Google Scholar 

  17. Babarit, A., Clément, A.H.: Optimal latching control of a wave energy device in regular and irregular waves. Appl. Ocean Res. 28(2), 77–91 (2006)

    Google Scholar 

  18. Babarit, A.: Ocean Wave Energy Conversion: Resource. Elsevier, Technologies and Performance (2017)

    Google Scholar 

  19. Drew, B., Plummer, A.R., Sahinkaya, M.N.: A review of wave energy converter technology. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 223(8), 887–902 (2009)

    Google Scholar 

  20. Albert, A., Berselli, G., Bruzzone, L., et al.: Mechanical design and simulation of an onshore four-bar wave energy converter. Renewable Energy 114, 766–774 (2017)

    Google Scholar 

  21. OWC PICO Power Plant, http://www.pico-owc.net/. Accessed 2009

  22. López, I., Andreu, J., Ceballos, S., et al.: Review of wave energy technologies and the necessary power-equipment. Renewable Sustainable Energy Rev. 27, 413–434 (2013)

    Google Scholar 

  23. Masuda, Y.: Wave-activated generator. in: Int. Coll. on the Expositions of the Oceans (Trans.), Bordeaux, France (1971)

  24. Masuda, Y.: Experimental full-scale results of wave power machine Kaimei in 1978. in: Proc First Symp Wave Energy Utilization, Gothenburg, Sweden, 349-363 (1979)

  25. Whittaker, T.J.T., Beattie, W., Folley, M., et al.: The Limpet Wave Power Project–the first years of operation. Renewable Energy (2004)

  26. Bedard, R., Hagerman, G.: E2I EPRI Assessment Offshore Wave Energy Conversion Devices. Washington, DC, USA, Electrical Innovation Institute (2004)

    Google Scholar 

  27. Falcão, A.D.O.: The shoreline OWC wave power plant at the Azores. In: Proceedings of 4th European Wave Energy Conference, 42-47 (2000)

  28. OceanLinx. Available online: http://arena.gov.au/. Accessed 2019

  29. Falcão, A.F., Henriques, J.C.: Oscillating-water-column wave energy converters and air turbines: a review. Renewable Energy 85, 1391–1424 (2016)

    Google Scholar 

  30. Masuda, Y., Yamazaki, T., Outa, Y., et al.: Study of backward bent duct buoy. In: OCEANS’87, IEEE 384-389 (1987)

  31. Washio, Y., Osawa, H., Ogata, T.: The open sea tests of the offshore floating type wave power device Mighty Whale-characteristics of wave energy absorption and power generation. IEEE 1, 579–585 (2001)

    Google Scholar 

  32. Falcão, A.F., Henriques, J.C., Cândido, J.J.: Dynamics and optimization of the OWC spar buoy wave energy converter. Renewable Energy 48, 369–381 (2012)

    Google Scholar 

  33. Whittaker, T.J.T., Langston, D., Fletcher, N., et al.: Islay LIMPET wave power plant. The Queen’s University of Belfast, Contract JOR3-CT98-0312 (2002)

  34. Elhanafi, A., Kim, C.J.: Experimental and numerical investigation on wave height and power take–off damping effects on the hydrodynamic performance of an offshore–stationary OWC wave energy converter. Renewable Energy 125, 518–528 (2018)

    Google Scholar 

  35. Engineering and Technology Magazine (E&T) 3, 26–29 (2008)

  36. WAVESTAR. Available online: http://wavestarenergy.com/. Accessed on 10 Mar 2011

  37. Zhang, X., Lu, D., Guo, F., et al.: The maximum wave energy conversion by two interconnected floaters: effects of structural flexibility. Appl. Ocean Res. 71, 34–47 (2018)

    Google Scholar 

  38. Gao, Y., Shao, S., Zou, H., et al.: A fully floating system for a wave energy converter with direct-driven linear generator. Energy 95, 99–109 (2016)

    Google Scholar 

  39. Trapanese, M., Boscaino, V., Cipriani, G., et al.: A permanent magnet linear generator for the enhancement of the reliability of a wave energy conversion system. IEEE Trans. Ind. Electron. 66(6), 4934–4944 (2018)

    Google Scholar 

  40. Wave Dragon. Available online: http://www.wavedragon.net/. Accessed 2003

  41. Kofoed, J.P., Frigaard, P., Friis-Madsen, E., et al.: Prototype testing of the wave energy converter wave dragon. Renewable Energy 31(2), 181–189 (2006)

    Google Scholar 

  42. EMEC. Available online: http://www.emec.org.uk/about-us/wave-clients/aquamarine-power/ (accessed in 2005)

  43. Bps. Available online: http://bps.energy/. Accessed 05 Dec 2016

  44. Zhu, G., Su, Y., Bai, P., et al.: Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano 8(6), 6031–6037 (2014)

    Google Scholar 

  45. Xie, X.D., Wang, Q., Wu, N.: Energy harvesting from transverse ocean waves by a piezoelectric plate. Int. J. Eng. Sci. 81, 41–48 (2014)

    Google Scholar 

  46. Viet, N.V., Wang, Q.: Ocean wave energy pitching harvester with a frequency tuning capability. Energy 162, 603–617 (2018)

    Google Scholar 

  47. Mueller, M.A., Polinder, H., Baker, N.: Current and novel electrical generator technology for wave energy converters. In: 2007 IEEE International Electric Machines & Drives Conference, 2, 1401-1406 (2007)

  48. Rhinefrank, K., Schacher, A., Prudell, J., et al.: Comparison of direct-drive power takeoff systems for ocean wave energy applications. IEEE J. Oceanic Eng. 37(1), 35–44 (2011)

    Google Scholar 

  49. Farrok, O., Islam, M.R., Sheikh, M.R.I., et al.: A split translator secondary stator permanent magnet linear generator for oceanic wave energy conversion. IEEE Trans. Ind. Electron. 65(9), 7600–7608 (2017)

    Google Scholar 

  50. Huang, L., Chen, M., Wang, L., et al.: Analysis of a hybrid field-modulated linear generator for wave energy conversion. IEEE Trans. Appl. Supercond. 28(3), 1–5 (2018)

    Google Scholar 

  51. Takao, M., Sato, E., Takeuchi, T., et al.: Sea trial of an impulse turbine for wave energy conversion. in: Proceedings of International Symposium on Eco Topia Science (2007)

  52. Setoguchi, T., Takao, M.: Current status of self rectifying air turbines for wave energy conversion. Energy Convers. Manage. 47(15–16), 2382–2396 (2006)

    Google Scholar 

  53. Takao, M., Setoguchi, T.: Air turbines for wave energy conversion. Int. J. Rotating Mach. 2012, 717398 (2012)

    Google Scholar 

  54. Dixon, S.L., Hall, C.: Fluid Mechanics and Thermodynamics of Turbomachinery. Butterworth-Heinemann, Oxford (2013)

    Google Scholar 

  55. OPT. Available online: https://www.oceanpowertechnologies.com/. Accessed 2018

  56. Henderson, R.: Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter. Renewable Energy 31(2), 271–283 (2006)

    MathSciNet  Google Scholar 

  57. Weinstein, A., Fredrikson, G., Parks, M.J., et al.: AquaBuOY-the offshore wave energy converter numerical modeling and optimization. IEEE 4, 1854–1859 (2004)

    Google Scholar 

  58. Elwood, D., Yim, S.C., Prudell, J., et al.: Design, construction, and ocean testing of a taut-moored dual-body wave energy converter with a linear generator power take-off. Renewable Energy 35(2), 348–354 (2010)

    Google Scholar 

  59. Huang, L., Yu, H., Hu, M., et al.: A novel flux-switching permanent-magnet linear generator for wave energy extraction application. IEEE Trans. Magn. 47(5), 1034–1037 (2011)

    Google Scholar 

  60. Huang, L., Yu, H., Hu, M., et al.: Research on a tubular primary permanent-magnet linear generator for wave energy conversions. IEEE Trans. Magn. 49(5), 1917–1920 (2013)

    Google Scholar 

  61. Huang, L., Liu, J., Yu, H., et al.: Winding configuration and performance investigations of a tubular superconducting flux-switching linear generator. IEEE Trans. Appl. Supercond. 25(3), 1–5 (2014)

    Google Scholar 

  62. Pan, J.F., Zou, Y., Cheung, N., et al.: On the voltage ripple reduction control of the linear switched reluctance generator for wave energy utilization. IEEE Trans. Power Electron. 29(10), 5298–5307 (2013)

    Google Scholar 

  63. Pu, Y., Zhou, S., Gu, J., et al.: A novel linear switch reluctance generator system. In: 2012 IEEE International Conference on Automation and Logistics, 421-427 (2012)

  64. Mueller, M.A., Baker, N.J.: Modelling the performance of the vernier hybrid machine. Elec. Power Appl. 150(6), 647–654 (2003)

    Google Scholar 

  65. Farrok, O., Islam, M.R., Sheikh, M.R.I., et al.: Design and analysis of a novel lightweight translator permanent magnet linear generator for oceanic wave energy conversion. IEEE Trans. Magn. 53(11), 1–4 (2017)

    Google Scholar 

  66. Farrok, O., Islam, M.R., Sheikh, M.R.I., et al.: A novel superconducting magnet excited linear generator for wave energy conversion system. IEEE Trans. Appl. Supercond. 26(7), 1–5 (2016)

    Google Scholar 

  67. Sui, Y., Zheng, P., Tong, C., et al.: Investigation of a tubular dual-stator flux-switching permanent-magnet linear generator for free-piston energy converter. J. Appl. Phys. 117(17), 17B519 (2015)

    Google Scholar 

  68. Farrok, O., Islam, M.R., Guo, Y., et al.: A novel design procedure for designing linear generators. IEEE Trans. Ind. Electron. 65(2), 1846–1854 (2017)

    Google Scholar 

  69. Pan, J.F., Li, Q., Wu, X., et al.: Complementary power generation of double linear switched reluctance generators for wave power exploitation. Int. J. Electr. Power Energy Syst. 106, 33–44 (2019)

    Google Scholar 

  70. Blanco, M., Lafoz, M., Navarro, G.: Wave energy converter dimensioning constrained by location, power take-off and control strategy. In: 2012 IEEE International Symposium on Industrial Electronics 1462-1467 (2012)

  71. Pan, J.F., Li, S.Y., Cheng, E., et al.: Analysis of a direct drive 2-D planar generator for wave energy conversion. IEEE Trans. Magn. 53(11), 1–5 (2017)

    Google Scholar 

  72. Pan, J.F., Zou, Y., Cheung, N., et al.: The direct-drive sensorless generation system for wave energy utilization. Int. J. Electr. Power Energy Syst. 62, 29–37 (2014)

    Google Scholar 

  73. Sun, Z.G., Cheung, N.C., Zhao, S.W., et al.: Design and simulation of a linear switched reluctance generator for wave energy conversion. in: 2011 4th International Conference on Power Electronics Systems and Applications 1-5 (2011)

  74. Pan, J., Zou, Y., Cao, G.: Investigation of a low-power, double-sided switched reluctance generator for wave energy conversion. IET Renew. Power Gener. 7(2), 98–109 (2013)

    Google Scholar 

  75. Di Dio, V., Franzitta, V., Milone, D., et al.: Design of bilateral switched reluctance linear generator to convert wave energy: Case study in Sicily. In: Advanced Materials Research (Vol. 860, pp. 1694-1698). Trans Tech Publications Ltd (2014)

  76. Hongwei, F.A.N.G., Yue, T.A.O., Zhang, S., et al.: Design and analysis of bidirectional driven float-type wave power generation system. J. Mod. Power Syst. Clean Energy 6(1), 50–60 (2018)

    Google Scholar 

  77. Li, W., Ching, T.W., Chau, K.T.: Design and analysis of a new parallel-hybrid-excited linear vernier machine for oceanic wave power generation. Appl. Energy 208, 878–888 (2017)

    Google Scholar 

  78. Toba, A., Lipo, T.A.: Generic torque-maximizing design methodology of surface permanent-magnet vernier machine. IEEE Trans. Ind. Appl. 36(6), 1539–1546 (2000)

    Google Scholar 

  79. Brooking, P.R.M., Mueller, M.A.: Power conditioning of the output from a linear vernier hybrid permanent magnet generator for use in direct drive wave energy converters. IEE. P. Gener. Trans. D. 152(5), 673–681 (2005)

    Google Scholar 

  80. Du, Y., Cheng, M., Chau, K.T., et al.: Linear primary permanent magnet vernier machine for wave energy conversion. IET Electr. Power Appl. 9(3), 203–212 (2015)

    Google Scholar 

  81. Du, Y., Chau, K.T., Cheng, M., et al.: Design and analysis of linear stator permanent magnet vernier machines. IEEE Trans. Magn. 47(10), 4219–4222 (2011)

    Google Scholar 

  82. Vining, J., Mundon, T., Nair, B.: Electromechanical design and experimental evaluation of a double-sided, dual airgap linear vernier generator for wave energy conversion. in: 2017 IEEE Energy Conversion Congress and Exposition (ECCE) 5557-5564 (2017)

  83. Raihan, M.A.H., Baker, N.J., Smith, K.J., et al.: Development and testing of a novel cylindrical permanent magnet linear generator. In: 2018 XIII International Conference on Electrical Machines (ICEM) 2137-2143 (2018)

  84. Baker, N.J., Raihan, M.A., Almoraya, A.A.: A cylindrical linear permanent magnet Vernier hybrid machine for wave energy. IEEE Trans. Energy Convers. 34(2), 691–700 (2018)

    Google Scholar 

  85. Liu, C., Yu, H., Hu, M., et al.: Research on a permanent magnet tubular linear generator for direct drive wave energy conversion. IET Renew. Power Gener. 8(3), 281–288 (2013)

    Google Scholar 

  86. Liu, C., Yu, H., Hu, M., et al.: Detent force reduction in permanent magnet tubular linear generator for direct-driver wave energy conversion. IEEE Trans. Magn. 49(5), 1913–1916 (2013)

    Google Scholar 

  87. Danielsson, O., Leijon, M., Sjostedt, E.: Detailed study of the magnetic circuit in a longitudinal flux permanent-magnet synchronous linear generator. IEEE Trans. Magn. 41(9), 2490–2495 (2005)

    Google Scholar 

  88. Bianchi, N., Bolognani, S., Cappello, A.D.F.: Reduction of cogging force in PM linear motors by pole-shifting. IEE. P. Elect. Power Appl. 152(3), 703–709 (2005)

    Google Scholar 

  89. Baatar, N., Yoon, H.S., Pham, M.T., et al.: Shape optimal design of a 9-pole 10-slot PMLSM for detent force reduction using adaptive response surface method. IEEE Trans. Magn. 45(10), 4562–4565 (2009)

    Google Scholar 

  90. Lejerskog, E., Leijon, M.: Detailed study of closed stator slots for a direct-driven synchronous permanent magnet linear wave energy converter. Machines 2(1), 73–86 (2014)

    Google Scholar 

  91. Zhang, J., Yu, H., Hu, M., et al.: Research on a PM slotless linear generator based on magnet field analysis model for wave energy conversion. IEEE Trans. Magn. 53(11), 1–4 (2017)

    Google Scholar 

  92. Xia, T., Yu, H., Guo, R., et al.: Research on the field-modulated tubular linear generator with quasi-halbach magnetization for ocean wave energy conversion. IEEE Trans. Appl. Supercond. 28(3), 1–5 (2018)

    Google Scholar 

  93. Wang, D., Shao, C., Wang, X.: Design and performance evaluation of a tubular linear switched reluctance generator with low cost and high thrust density. IEEE Trans. Appl. Supercond. 26(7), 1–5 (2016)

    Google Scholar 

  94. Zhang, J., Yu, H., Chen, Q., et al.: Design and experimental analysis of AC linear generator with Halbach PM arrays for direct-drive wave energy conversion. IEEE Trans. Appl. Supercond. 24(3), 1–4 (2013)

    Google Scholar 

  95. Farrok, O., Islam, M.R., Sheikh, M.R.I., et al.: Oceanic wave energy conversion by a novel permanent magnet linear generator capable of preventing demagnetization. IEEE Trans. Ind. Appl. 54(6), 6005–6014 (2018)

    Google Scholar 

  96. Farrok, O., Islam, M.R., Sheikh, M.R.I., et al.: A novel method to avoid degradation due to demagnetization of PM linear generators for oceanic wave energy extraction. in: 2017 20th International Conference on Electrical Machines and Systems (ICEMS) 1-6 (2017)

  97. Xia, T., Yu, H., Chen, Z., et al.: Design and analysis of a field-modulated tubular linear permanent magnet generator for direct-drive wave energy conversion. IEEE Trans. Magn. 53(6), 1–4 (2017)

    Google Scholar 

  98. Du, J., Liang, D., Xu, L., et al.: Modeling of a linear switched reluctance machine and drive for wave energy conversion using matrix and tensor approach. IEEE Trans. Magn. 46(6), 1334–1337 (2010)

    Google Scholar 

  99. Liang, C., Zuo, L.: On the dynamics and design of a two-body wave energy converter. Renewable Energy 101, 265–274 (2017)

    Google Scholar 

  100. Kim, J., Koh, H.J., Cho, I.H., et al.: Experimental study of wave energy extraction by a dual-buoy heaving system. Int. J. Nav. Archit. Ocean Eng. 9(1), 25–34 (2017)

    Google Scholar 

  101. Al Shami, E., Wang, X., Zhang, R., et al.: A parameter study and optimization of two body wave energy converters. Renewable Energy 131, 1–13 (2019)

    Google Scholar 

  102. Chen, Z., Zhou, B., Zhang, L., et al.: Experimental and numerical study on a novel dual-resonance wave energy converter with a built-in power take-off system. Energy 165, 1008–1020 (2018)

    Google Scholar 

  103. Ruellan, M., BenAhmed, H., Multon, B., et al.: Design methodology for a SEAREV wave energy converter. IEEE Trans. Energy Convers. 25(3), 760–767 (2010)

    Google Scholar 

  104. Bracco, G., Giorcelli, E., Mattiazzo, G.: ISWEC: a gyroscopic mechanism for wave power exploitation. Mech. Mach. Theory 46(10), 1411–1424 (2011)

    MATH  Google Scholar 

  105. Battezzato, A., Bracco, G., Giorcelli, E., et al.: Performance assessment of a 2 DOF gyroscopic wave energy converter. Journal of Theoretical and Applied Mechanics 53(1), 195–207 (2015)

    Google Scholar 

  106. Boren, B.C., Lomonaco, P., Batten, B.A., et al.: Design, development, and testing of a scaled vertical axis pendulum wave energy converter. IEEE Trans. Sustain Energy 8(1), 155–163 (2016)

    Google Scholar 

  107. Yurchenko, D., Alevras, P.: Parametric pendulum based wave energy converter. Mech. Syst. Signal Process. 99, 504–515 (2018)

    Google Scholar 

  108. Crowley, S., Porter, R., Taunton, D.J., et al.: Modelling of the WITT wave energy converter. Renewable Energy 115, 159–174 (2018)

    Google Scholar 

  109. Guo, Q., Sun, M., Liu, H., et al.: Design and experiment of an electromagnetic ocean wave energy harvesting device. in: 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) 381-384 (2018)

  110. Coiro, D.P., Troise, G., Calise, G., et al.: Wave energy conversion through a point pivoted absorber: numerical and experimental tests on a scaled model. Renewable Energy 87, 317–325 (2016)

    Google Scholar 

  111. Porter, K., Ordonez-Sanchez, S., Johnstone, C., et al.: Integration of a direct drive contra-rotating generator with point absorber wave energy converters. in: 12th European Wave and Tidal Energy Conference (2017)

  112. Lok, K.S., Stallard, T.J., Stansby, P.K., et al.: Optimisation of a clutch-rectified power take-off system for a heaving wave energy device in irregular waves with experimental comparison. International Journal of Marine Energy 8, 1–16 (2014)

    Google Scholar 

  113. Dang, T.D., Phan, C.B., Ahn, K.K.: Design and investigation of a novel point absorber on performance optimization mechanism for wave energy converter in heave mode. International Journal of Precision Engineering and Manufacturing-Green Technology 6(3), 477–488 (2019)

    Google Scholar 

  114. Liang, C., Ai, J., Zuo, L.: Design, fabrication, simulation and testing of an ocean wave energy converter with mechanical motion rectifier. Ocean Eng. 136, 190–200 (2017)

    Google Scholar 

  115. Chen, H.M., DelBalzo, D.R.: Linear sliding wave energy converter. in: OCEANS 2015-Genova 1-6(2015)

  116. Binh, P.C., Tri, N.M., Dung, D.T., et al.: Analysis, design and experiment investigation of a novel wave energy converter. IET Gener. Transm. Distrib. 10(2), 460–469 (2016)

    Google Scholar 

  117. Binh, P.C.: A study on design and simulation of the point absorber wave energy converter using mechanical PTO. In: 2018 4th International Conference on Green Technology and Sustainable Development (GTSD) 122-125 (2018)

  118. Martinez, C.P., SanJuan, J., Oliveros, I., et al.: Simulation of a slider-crank mechanism driven by a buoy for wave energy converters applications. In: 2019 IEEE PES Innovative Smart Grid Technologies Conference-Latin America, 1-5 (2019)

  119. Sang, Y., Karayaka, H.B., Yan, Y., et al.: A rule-based phase control methodology for a slider-crank wave energy converter power take-off system. Int. J. Mar. Sci. 19, 124–144 (2017)

    Google Scholar 

  120. Yu, T., Shi, H., Song, W.: Rotational characteristics and capture efficiency of a variable guide vane wave energy converter. Renewable Energy 122, 275–290 (2018)

    Google Scholar 

  121. Joe, H., Roh, H., Cho, H., et al.: Development of a flap-type mooring-less wave energy harvesting system for sensor buoy. Energy 133, 851–863 (2017)

    Google Scholar 

  122. Chow, Y.C., Chang, Y.C., Chen, D.W., et al.: Parametric design methodology for maximizing energy capture of a bottom-hinged flap-type WEC with medium wave resources. Renewable Energy 126, 605–616 (2018)

    Google Scholar 

  123. Chen, W., Gao, F., Meng, X.: Kinematics and dynamics of a novel 3-degree-of-freedom wave energy converter. Journal of Engineering for the Maritime Environment 233(3), 687–698 (2019)

    Google Scholar 

  124. Barbarelli, S., Amelio, M., Castiglione, T., et al.: Analysis of the equilibrium conditions of a double rotor turbine prototype designed for the exploitation of the tidal currents. Energy Convers. Manag. 87, 1124–1133 (2014)

    Google Scholar 

  125. Wang, L., Kolios, A., Cui, L., et al.: Flexible multibody dynamics modelling of point-absorber wave energy converters. Renewable Energy 127, 790–801 (2018)

    Google Scholar 

  126. Yang, Y., Diaz, I., Morales, M.: A vertical-axis unidirectional rotor for wave energy conversion. Ocean Eng. 160, 224–230 (2018)

    Google Scholar 

  127. Farrok, O., Islam, M.R., Muttaqi, K.M., et al.: Design and optimization of a novel duport linear generator for oceanic wave energy conversion. IEEE Trans. Ind. Electron. 67(5), 3409–3418 (2020)

    Google Scholar 

  128. Chen, F., Duan, D., Han, Q., et al.: Study on force and wave energy conversion efficiency of buoys in low wave energy density seas. Energy Convers. Manage. 182, 191–200 (2019)

    Google Scholar 

  129. Shi, H., Han, Z., Zhao, C.: Numerical study on the optimization design of the conical bottom heaving buoy convertor. Ocean Eng. 173, 235–243 (2019)

    Google Scholar 

  130. Sun, C., Luo, Z., Shang, J., et al.: Design and numerical analysis of a novel counter-rotating self-adaptable wave energy converter based on CFD technology. Energies 11(4), 694 (2018)

    Google Scholar 

  131. Al Shami, E., Zhang, R., Wang, X.: Point absorber wave energy harvesters: a review of recent developments. Energies 12(1), 47 (2019)

    Google Scholar 

  132. Liu, Z., Wang, X., Zhang, R., et al.: A dimensionless parameter analysis of a cylindrical tube electromagnetic vibration energy harvester and its oscillator nonlinearity effect. Energies 11(7), 1653 (2018)

    Google Scholar 

  133. McNabb, L., Wang, L., McGrath, B.: Intrinsically stable realization of a resonant current regulator for a single phase inverter. in: 2017 11th Asian Control Conference (ASCC), 2256-2261 (2017)

Download references

Acknowledgements

Authors would like to thank Australia Research Council Discovery Project (Grant DP170101039) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

ZWL, data curation, investigation, writing—original draft preparation; RZ, writing—review and editing; HX, writing—review and editing; XW, writing—review and editing, supervision.

Corresponding author

Correspondence to X. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Zhang, R., Xiao, H. et al. Survey of the mechanisms of power take-off (PTO) devices of wave energy converters. Acta Mech. Sin. 36, 644–658 (2020). https://doi.org/10.1007/s10409-020-00958-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-020-00958-z

Keywords

Navigation