Japanese Journal of Ophthalmology

, Volume 58, Issue 3, pp 244–251 | Cite as

Comparative study of macular ganglion cell complex thickness measured by spectral-domain optical coherence tomography in healthy eyes, eyes with preperimetric glaucoma, and eyes with early glaucoma

  • Yu Jeong Kim
  • Min Ho Kang
  • Hee Yoon Cho
  • Han Woong Lim
  • Mincheol SeongEmail author
Clinical Investigation



To evaluate the diagnostic accuracy of Topcon 3D spectral-domain optical coherence tomography (SD-OCT) for measuring the macular inner retinal layers and the circumpapillary retinal nerve fiber layer (cpRNFL) in order to detect preperimetric glaucoma.


Two hundred four eyes, including 64 healthy eyes, 68 eyes with preperimetric glaucoma, and 72 eyes with early glaucoma were analyzed. Patients had a comprehensive ocular examination including visual field testing and SD-OCT imaging (3D OCT-2000; Topcon Corporation, Tokyo, Japan) in the macular and peripapillary regions. OCT macular scans were segmented into the macular nerve fiber layer (mNFL), ganglion cell layer with the inner plexiform layer (GCIP), and ganglion cell complex (GCC) (composed of the mNFL and GCIP). Ability to discriminate preperimetric glaucoma was assessed using the area under the receiver operating curve for all macular parameters and the cpRNFL.


The median visual field MD was −0.78 ± 1.19 dB for the healthy group, −1.02 ± 1.29 dB for the preperimetric glaucoma group, and −3.08 ± 1.61 dB for the early glaucoma group. There were significant differences between the preperimetric and healthy groups for GCIP and GCC and for almost all cpRNFL thickness parameters (P < 0.05), except for the mNFL and cpRNFL (nasal, 3, 4, 8, 9, and 10 o’clock sectors). The comparisons among the AUCs of the cpRNFL parameters (0.772), the GCIP parameters (0.727) and the GCC parameters (0.720) showed no significant differences in their abilities to detect preperimetric glaucoma.


The capacity of Topcon 3D-OCT macular intraretinal parameters (GCIP and GCC measurements, not mNFL measurements) to diagnose preperimetric glaucoma is similar to that of the cpRNFL.


Preperimetric glaucoma Ganglion cell complex GCC Retinal nerve fiber layer RNFL 



This work was supported by a research fund from Hanyang University (HY-2012).

Conflicts of interest

Y. J. Kim, None; M. H. Kang, None; H. Y. Cho, None; H. W. Lim, None; M. Seong, None.


  1. 1.
    Ajtony C, Balla Z, Somoskeoy S, Kovacs B. Relationship between visual field sensitivity and retinal nerve fiber layer thickness as measured by optical coherence tomography. Invest Ophthalmol Vis Sci. 2007;48:258–63.PubMedCrossRefGoogle Scholar
  2. 2.
    Asrani S, Challa P, Herndon L, Lee P, Stinnett S, Allingham RR. Correlation among retinal thickness, optic disc, and visual field in glaucoma patients and suspects: a pilot study. J Glaucoma. 2003;12:119–28.PubMedCrossRefGoogle Scholar
  3. 3.
    Quigley HA, Addicks EM, Green WR. Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol. 1982;100:135–46.PubMedCrossRefGoogle Scholar
  4. 4.
    Mikelberg FS, Yidegiligne HM, Schulzer M. Optic nerve axon count and axon diameter in patients with ocular hypertension and normal visual fields. Ophthalmology. 1995;102:342–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Rao HL, Zangwill LM, Weinreb RN, Sample PA, Alencar LM, Medeiros FA. Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. Ophthalmology. 2010;117:1692–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Kim JS, Ishikawa H, Sung KR, et al. Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography. Br J Ophthalmol. 2009;93:1057–63.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Kim NR, Lee ES, Seong GJ, Kim JH, An HG, Kim CY. Structure–function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma. Invest Ophthalmol Vis Sci. 2010;51:4646–51.PubMedCrossRefGoogle Scholar
  8. 8.
    Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990;300:5–25.PubMedCrossRefGoogle Scholar
  9. 9.
    Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Wollstein G, et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology. 2009;116:2305-14e1–2.CrossRefGoogle Scholar
  10. 10.
    Schulze A, Lamparter J, Pfeiffer N, Berisha F, Schmidtmann I, Hoffmann EM. Diagnostic ability of retinal ganglion cell complex, retinal nerve fiber layer, and optic nerve head measurements by Fourier-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2011;249:1039–45.PubMedCrossRefGoogle Scholar
  11. 11.
    Garas A, Vargha P, Hollo G. Diagnostic accuracy of nerve fibre layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma. Eye (Lond). 2011;25:57–65.CrossRefGoogle Scholar
  12. 12.
    Lisboa R, Leite MT, Zangwill LM, Tafreshi A, Weinreb RN, Medeiros FA. Diagnosing preperimetric glaucoma with spectral domain optical coherence tomography. Ophthalmology. 2012;119:2261–9.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Na JH, Sung KR, Baek S, Kim YJ, Durbin MK, Lee HJ, et al. Detection of glaucoma progression by assessment of segmented macular thickness data obtained using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53:3817–26.PubMedCrossRefGoogle Scholar
  14. 14.
    Hoyt WF, Frisen L, Newman NM. Funduscopy of nerve fiber layer defects in glaucoma. Invest Ophthalmol. 1973;12:814–29.PubMedGoogle Scholar
  15. 15.
    Quigley HA, Miller NR, George T. Clinical evaluation of nerve fiber layer atrophy as an indicator of glaucomatous optic nerve damage. Arch Ophthalmol. 1980;98:1564–71.PubMedCrossRefGoogle Scholar
  16. 16.
    Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC, et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol. 1991;109:77–83.PubMedCrossRefGoogle Scholar
  17. 17.
    Quigley HA, Katz J, Derick RJ, Gilbert D, Sommer A. An evaluation of optic disc and nerve fiber layer examination in monitoring progression of early glaucoma damage. Ophthalmology. 1992;99:19–28.PubMedCrossRefGoogle Scholar
  18. 18.
    Airaksinen PJ, Drance SM, Douglas GR, Mawson DK, Nieminen H. Diffuse and localized nerve fiber loss in glaucoma. Am J Ophthalmol. 1984;98:566–71.PubMedGoogle Scholar
  19. 19.
    Harwerth RS, Carter-Dawson L, Shen F, Smith EL III, Crawford ML. Ganglion cell losses underlying visual field defects from experimental glaucoma. Invest Ophthalmol Vis Sci. 1999;40:2242–50.PubMedGoogle Scholar
  20. 20.
    Zeimer R, Asrani S, Zou S, Quigley H, Jampel H. Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. Ophthalmology. 1998;105:224–31.PubMedCrossRefGoogle Scholar
  21. 21.
    Ojima T, Tanabe T, Hangai M, Yu S, Morishita S, Yoshimura N. Measurement of retinal nerve fiber layer thickness and macular volume for glaucoma detection using optical coherence tomography. Jpn J Ophthalmol. 2007;51:197–203.PubMedCrossRefGoogle Scholar
  22. 22.
    Leung CK, Chan WM, Yung WH, Ng AC, Woo J, Tsang MK, et al. Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology. 2005;112:391–400.PubMedCrossRefGoogle Scholar
  23. 23.
    Tan O, Li G, Lu AT, Varma R, Huang D. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology. 2008;115:949–56.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Ishikawa H, Stein DM, Wollstein G, Beaton S, Fujimoto JG, Schuman JS. Macular segmentation with optical coherence tomography. Invest Ophthalmol Vis Sci. 2005;46:2012–7.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Greenfield DS, Bagga H, Knighton RW. Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. Arch Ophthalmol. 2003;121:41–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Koseki N, Araie M, Suzuki Y, Yamagami J. Visual field damage proximal to fixation in normal- and high-tension glaucoma eyes. Jpn J Ophthalmol. 1995;39:274–83.PubMedGoogle Scholar
  27. 27.
    Araie M, Yamagami J, Suziki Y. Visual field defects in normal-tension and high-tension glaucoma. Ophthalmology. 1993;100:1808–14.PubMedCrossRefGoogle Scholar
  28. 28.
    Weber J, Dannheim F, Dannheim D. The topographical relationship between optic disc and visual field in glaucoma. Acta Ophthalmol (Copenh). 1990;68:568–74.CrossRefGoogle Scholar
  29. 29.
    Wollstein G, Schuman JS, Price LL, Aydin A, Beaton SA, Stark PC, et al. Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields. Am J Ophthalmol. 2004;138:218–25.PubMedCrossRefGoogle Scholar
  30. 30.
    Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Susanna R Jr, Weinreb RN. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol. 2005;139:44–55.PubMedCrossRefGoogle Scholar
  31. 31.
    Seong M, Sung KR, Choi EH, Kang SY, Cho JW, Um TW, et al. Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma. Invest Ophthalmol Vis Sci. 2012;51:1446–52.CrossRefGoogle Scholar
  32. 32.
    Mori S, Hangai M, Sakamoto A, Yoshimura N. Spectral-domain optical coherence tomography measurement of macular volume for diagnosing glaucoma. J Glaucoma. 2010;19:528–34.PubMedCrossRefGoogle Scholar
  33. 33.
    Nakatani Y, Higashide T, Ohkubo S, Takeda H, Sugiyama K. Evaluation of macular thickness and peripapillary retinal nerve fiber layer thickness for detection of early glaucoma using spectral domain optical coherence tomography. J Glaucoma. 2011;20:252–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Girkin CA, Liebmann J, Fingeret M, Greenfield DS, Medeiros F. The effects of race, optic disc area, age, and disease severity on the diagnostic performance of spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:6148–53.PubMedCrossRefGoogle Scholar
  35. 35.
    Arintawati P, Sone T, Akita T, Tanaka J, Kiuchi Y. The applicability of ganglion cell complex parameters determined from SD-OCT images to detect glaucomatous eyes. J Glaucoma. 2012;22:713–8.CrossRefGoogle Scholar
  36. 36.
    Kotowski J, Folio LS, Wollstein G, Ishikawa H, Ling Y, Bilonick RA, et al. Glaucoma discrimination of segmented cirrus spectral domain optical coherence tomography (SD-OCT) macular scans. Br J Ophthalmol. 2012;96:1420–5.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Nouri-Mahdavi K, Nikkhou K, Hoffman DC, Law SK, Caprioli J. Detection of early glaucoma with optical coherence tomography (StratusOCT). J Glaucoma. 2008;17:183–8.PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Ophthalmological Society 2014

Authors and Affiliations

  • Yu Jeong Kim
    • 1
  • Min Ho Kang
    • 1
  • Hee Yoon Cho
    • 1
  • Han Woong Lim
    • 1
  • Mincheol Seong
    • 1
    Email author
  1. 1.Department of OphthalmologyHanyang University College of Medicine, Guri HospitalGuriKorea

Personalised recommendations