Skip to main content
Log in

Combining data-driven models to assess susceptibility of shallow slides failure and run-out

  • Technical Note
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

This research is focused on the susceptibility assessment of shallow slides by modeling the failure and run-out areas separately. The shallow slides failure is evaluated using a statistical method (logistic regression) and for the run-out assessment, a simple cellular automata model is proposed. The existence of shallow slides inventories occurred in distinct time periods allowed the separation of data into two independent groups (modeling and validation) and the adoption of the temporal criterion for the independent validation. The logistic regression model showed a very good predictive capacity (area under the receiver operating characteristic curve of 0.90), although it may be overestimated, as well as the susceptibility scores obtained. The run-out modeling, using a simple cellular automata model developed for this study, provided good results, with an overlap between the simulation and the real cases of 77%. Lastly, a final shallow slide susceptibility map was constructed including both failure and run-out areas. This work accomplished a combination of low-cost methodology with limited input data that allowed a good performance of the landslide susceptibility assessment and can be easily applied to other regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  • Al-shalabi M, Billa L, Pradhan B, Mansor S, Al-Sharif AAA (2013) Modelling urban growth evolution and land-use changes using GIS based cellular automata and SLEUTH models: the case of Sana’a metropolitan city, Yemen. Environ Earth Sci 70(1):425–437

    Google Scholar 

  • Althuwaynee OF, Pradhan B, Park HJ, Lee JH (2014) A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena 114:21–36

    Google Scholar 

  • Avolio MV, Crisci GM, D’Ambrosio D, Di Gregorio S, Iovine G, Rongo R, Spataro W (2003) An extended notion of cellular automata for surface flows modelling. WSEAS Trans Comput 2(4):1080–1085

    Google Scholar 

  • Avolio MV, Crisci GM, Di Gregorio S, Rongo R, Spataro W, D’Ambrosio D (2006) Pyroclastic flows modelling using cellular automata. Comput Geosci 32:897–911

    Google Scholar 

  • Avolio MV, Errera A, Lupiano V, Mazzanti P, Di Gregorio S (2012) VALANCA: a cellular automata model for simulating snow avalanches. J Cell Autom 12(5):309–332

    Google Scholar 

  • Avolio MV, Di Gregorio S, Lupiano V, Mazzanti P (2013) SCIDDICA-SS3: a new version of cellular automata model for simulating fast moving landslides. J Supercomput 65(2):682–696

    Google Scholar 

  • Bai S, Wang J, Lü G, Zhou P, Hou S, Xu S (2010) GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China. Geomorphology 115:23–31

    Google Scholar 

  • Bai S, Lü G, Wang J, Zhou P, Ding L (2011) GIS-based rare events logistic regression for landslide-susceptibility mapping of Lianyungang, China. Environ Earth Sci 62:139–149

    Google Scholar 

  • Barpi F, Borri-Brunetto M, Veneri LD (2007) Cellular-automata model for dense-snow avalanches. J Cold Reg Eng 21:121–140

    Google Scholar 

  • Beguería S (2006) Validation and evaluation of predictive models in hazard assessment and risk management. Nat Hazards 37(3):315–329

    Google Scholar 

  • Beguería S, Van Asch THWJ, Malet J-P, Gröndahl S (2009) A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain. Nat Hazards Earth Syst Sci 9:1897–1909

    Google Scholar 

  • Benda LE, Cundy TW (1990) Predicting deposition of debris flows in mountain channels. Can Geotech J 27:409–417

    Google Scholar 

  • Bui DT, Lofman O, Revhaug I, Dick O (2011) Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Nat Hazards 59(3):1413–1444

    Google Scholar 

  • Catani F, Segoni S, Falorni G (2010) An empirical geomorphology-based approach to the spatial prediction of soil thickness at catchment scale. Water Resour Res 46:W05508

    Google Scholar 

  • Christen M, Kowalski J, Bartelt P (2010) RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg Sci Technol 63:1–14

    Google Scholar 

  • Chung C-JF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30:451–472

    Google Scholar 

  • Clerici A, Perego S, Tellini C, Vescovi P (2010) Landslide failure and runout susceptibility in the upper T. Ceno valley (Northern Apennines, Italy). Nat Hazards 52:1–29

    Google Scholar 

  • Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33:260–271

    Google Scholar 

  • Corominas J, Copons R, Vilaplana JM, Altimir J, Amigó J (2003) Integrated landslide susceptibility analysis and hazard assessment in the principality of Andorra. Nat Hazards 30:421–435

    Google Scholar 

  • Corominas J, Van Westen C, Frattini P, Cascini L, Malet J-P, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervás J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73:209–263

    Google Scholar 

  • D’Ambrosio D, Spataro W (2007) Parallel evolutionary modelling of geological processes. Parallel Comput 33:186–212

    Google Scholar 

  • D’Ambrosio D, Di Gregorio S, Iovine G, Lupiano V, Rongo R, Spataro W (2003a) First simulations of the Sarno debris flows through cellular automata modelling. Geomorphology 54:91–117

    Google Scholar 

  • D’Ambrosio D, Di Gregorio S, Iovine G (2003b) Simulating debris flows through a hexagonal cellular automata model: SCIDDICA S3−hex. Nat Hazards Earth Syst Sci 3:545–559

    Google Scholar 

  • D’Ambrosio D, Spataro W, Iovine G (2006) Parallel genetic algorithms for optimising cellular automata models of natural complex phenomena: an application to debris flows. Comput Geosci 32:861–875

    Google Scholar 

  • Dahl M-PJ, Mortensen LE, Veihe A, Jensen NH (2010) A simple qualitative approach for mapping regional landslide susceptibility in the Faroe Islands. Nat Hazards Earth Syst Sci 10:159–170

    Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modelling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228

    Google Scholar 

  • Dai FC, Lee CF, Sijing W (1999) Analysis of rainstorm-induced slide-debris flows on a natural terrain of Lantau Island, Hong Kong. Eng Geol 51:279–290

    Google Scholar 

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64:65–87

    Google Scholar 

  • Eastman JR (2012) IDRISI Selva Tutorial. IDRISI Production. Clark Labs-Clark University, Worcester, p 45

    Google Scholar 

  • Environmental Systems Research Institute (ESRI) (2014) ArcGIS desktop help 10.5, spatial analyst, distance toolset, cost path. http://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/cost-path.htm

  • Fannin RJ, Wise MP (2001) An empirical-statistical model for debris flow travel distance. Can Geotech J 38(5):982–994

    Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874

    Google Scholar 

  • Ferreira AB, Zêzere JL, Rodrigues ML (1987) Instabilité des versants dans la région au Nord de Lisbonne. Essai de cartographie géomorphologique. Finisterra 22(43):227–246

    Google Scholar 

  • Frattini P, Crosta G, Carrara A (2010) Techniques for evaluating the performance of landslide susceptibility models. Eng Geol 111:62–72

    Google Scholar 

  • Gorsevski PV, Gessler PE, Foltz RB, Elliot WJ (2006) Spatial prediction of landslide hazard using logistic regression and ROC analysis. Trans GIS 10(3):395–415

    Google Scholar 

  • Gregoretti C, Degetto M, Boreggio M (2016) GIS-based cell model for simulating debris flow runout on a fan. J Hydrol 534:326–340

    Google Scholar 

  • Greiving S, Van Westen C, Corominas J, Glade T, Malet JP, Van Asch T (2014) Introduction: the components of risk governance. In: van Asch et al (eds) Mountain risks: from prediction to management and governance. Advances in natural and technological hazards research, vol 34, pp 1–27. https://doi.org/10.1007/978-94-007-6769-08 (Chapter 1)

    Chapter  Google Scholar 

  • Guan D, Li H, Inohae T, Su W, Nagaie T, Hokao K (2011) Modelling urban land use change by the integration of cellular automaton and Markov model. Ecol Model 222:3761–3772

    Google Scholar 

  • Guillard C, Zêzere JL (2012) Landslide susceptibility assessment and validation in the framework of municipal planning in Portugal: the case of Loures Municipality. Environ Manag 50(4):721–735

    Google Scholar 

  • Guinau M, Vilajosana I, Vilaplana JM (2007) GIS-based debris flow source and runout susceptibility assessment from DEM data: a case study in NW Nicaragua. Nat Hazards Earth Syst Sci 7:703–716

    Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216

    Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184

    Google Scholar 

  • Hervás J, Bobrowsky P (2009) Mapping: inventories, susceptibility, hazard and risk. In: Sassa K, Canuti P (eds) Landslides — disaster risk reduction. Springer, Berlin, pp 321–349

    Google Scholar 

  • Hong H, Pourghasemi HR, Pourtaghi ZS (2016) Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical models. Geomorphology 259:105–118

    Google Scholar 

  • Hungr O, McDougall S (2009) Two numerical models for landslide dynamic analysis. Comput Geosci 35:978–992

    Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194

    Google Scholar 

  • Hürlimann M, Copons R, Altimir J (2006) Detailed debris flow hazard assessment in Andorra: a multidisciplinary approach. Geomorphology 78:359–372

    Google Scholar 

  • Hürlimann M, Medina V, Bateman A, Copons R, Altimir J (2007) Comparison of different techniques to analyse the mobility of debris flows during hazard assessment — case study in La Comella catchment, Andorra. In: Chen CL, Major JJ (eds) Debris-flow hazard mitigation: mechanics, prediction and assessment. Millpress, Netherlands, pp 411–422

    Google Scholar 

  • IGP (2004) Carta topográfica digital na escala 1:10 000, folhas 389, 390, 403 e 404. Lisboa

  • INETI (2005) Carta Geológica da Área Metropolitana de Lisboa na escala 1: 25 000. Lisboa

  • Iovine G, Di Gregorio S, Lupiano V (2003) Debris-flow susceptibility assessment through cellular automata modelling: an example from 15–16 December 1999 disaster at Cervinara and San Martino Valle Caudina (Campania, southern Italy). Nat Hazards Earth Syst Sci 3:457–468

    Google Scholar 

  • Iovine G, D’Ambrosio D, Di Gregorio S (2005) Applying genetic algorithms for calibrating a hexagonal cellular automata model for the simulation of debris flows characterized by strong inertial effects. Geomorphology 66:287–303

    Google Scholar 

  • Kavzoglu T, Sahin EK, Colkesen I (2014) Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11:425–439

    Google Scholar 

  • Kutiel H, Trigo RM (2014) The rainfall regime in Lisbon in the last 150 years. Theor Appl Climatol 118(3):387–403

    Google Scholar 

  • Lai T, Dragićević S (2011) Development of an urban landslide cellular automata model: a case study of North Vancouver, Canada. Earth Sci Inf 4:69–80

    Google Scholar 

  • Lupiano V, Machado G, Crisci GM, Di Gregorio S (2015) A modelling approach with macroscopic cellular automata for hazard zonation of debris flows and lahars by computer simulations. Int J Geol 9:35–46 ISSN: 1998–4499

    Google Scholar 

  • Melo R, Zêzere JL (2017a) Avaliação da suscetibilidade à rutura e propagação de fluxos de detritos na bacia hidrográfica do rio Zêzere (Serra da Estrela, Portugal). Rev Bras Geomorfol 18(1):1–26

    Google Scholar 

  • Melo R, Zêzere JL (2017b) Modeling debris flow initiation and run-out in recently burned areas using data-driven methods. Nat Hazards 88:1373–1407

    Google Scholar 

  • Melo R, Van Asch T, Zêzere JL (2018) Debris flow run-out simulation and analysis using a dynamic model. Nat Hazards Earth Syst Sci 18:555–570

    Google Scholar 

  • Milledge DG, Bellugi D, McKean JA, Densmore AL, Dietrich WE (2014) A multidimensional stability model for predicting shallow landslide size and shape across landscapes. J Geophys Res Earth Surf 119:2481–2504

    Google Scholar 

  • Mitsova D, Shuster W, Wang X (2011) A cellular automata model of land cover change to integrate urban growth with open space conservation. Landsc Urban Plan 99(2):141–153

    Google Scholar 

  • O’Brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41:673–690

    Google Scholar 

  • O’Brien JS, Julien PY, Fullerton WT (1993) Two dimensional water flood and mudflow simulation. J Hydraul Eng 119:244–261

    Google Scholar 

  • Oliveira SC, Zêzere JL, Catalão J, Nico G (2015) The contribution of PSInSAR interferometry to landslide hazard in weak rock-dominated areas. Landslides 12:703–719

    Google Scholar 

  • Oliveira SC, Zêzere JL, Lajas S, Melo R (2017) Combination of statistical and physically based methods to assess shallow slide susceptibility at the basin scale. Nat Hazards Earth Syst Sci 17:1091–1109

    Google Scholar 

  • Piedade AMM, Zêzere JL, Garcia RAC, Oliveira SC (2011) Modelos de susceptibilidade a deslizamentos superficiais translacionais na região a norte de Lisboa. Finisterra 46(91):9–26

    Google Scholar 

  • Quan Luna B, Remaître A, Van Asch THWJ, Malet J-P, Van Westen CJ (2012) Analysis of debris flow behavior with a one dimensional run-out model incorporating entrainment. Eng Geol 128:63–75

    Google Scholar 

  • Quan Luna B, Blahut J, Van Asch T, Van Westen CJ, Kappes M (2016) ASCHFLOW - a dynamic landslide run-out model for medium scale hazard analysis. Geoenviron Disasters 3:29. https://doi.org/10.1186/s40677-016-0064-7

    Article  Google Scholar 

  • Rickenmann D (1999) Empirical relationships for debris flows. Nat Hazards 19:47–77

    Google Scholar 

  • Scheidl C, Rickenmann D (2010) Empirical prediction of debris-flow mobility and deposition on fans. Earth Surf Process Landf 35:157–173

    Google Scholar 

  • Segoni S, Rossi G, Catani F (2012) Improving basin scale shallow landslide modelling using reliable soil thickness maps. Nat Hazards 61:85–101

    Google Scholar 

  • Segre E, Deangeli C (1995) Cellular automaton for realistic modelling of landslides. Nonlinear Process Geophys 2:1–15

    Google Scholar 

  • Soeters R, Van Westen CJ (1996) Slope instability recognition, analysis and zonation. In: Turner AK, Schuster RL (eds) Landslides, investigation and mitigation. Transportation Research Board, National Research Council, Special Report, vol 247. National Academy Press, Washington, pp 129–177

    Google Scholar 

  • Spataro W, D’Ambrosio D, Avolio MV, Rongo R, Di Gregorio S (2008) Complex systems modelling with cellular automata and genetic algorithms: an application to lava flows. Proceedings of the 2008 International Conference on Scientific Computing, Las Vegas

  • Surdeanu V (1986) Landslides and their role in reservoir silting. In: Slaymaker O, Balteanu D (eds) Geomorphology and land management, Zeitsch, vol 58. Fur Geomorph Suppl.-Bd, pp 165–171

  • Süzen ML, Doyuran V (2004) A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol 45:665–679

    Google Scholar 

  • Tiranti D, Deangeli C (2015) Modelling of debris flow depositional patterns according to the catchment and sediment source area characteristics. Front Earth Sci 3(8):1–14

    Google Scholar 

  • Van Asch THWJ, Buma J, van Beek LPH (1999) A view on some hydrological triggering systems in landslides. Geomorphology 30:25–32

    Google Scholar 

  • Van Asch THWJ, Tang C, Alkema D, Zhu J, Zhou W (2014) An integrated model to assess critical rainfall thresholds for run-out distances of debris flows. Nat Hazards 70:299–311

    Google Scholar 

  • Van den Eeckhaut M, Vanwalleghem T, Poesen J, Govers G, Verstraeten G, Vandekerckhove L (2006) Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium). Geomorphology 76:392–410

    Google Scholar 

  • Van den Eeckhaut M, Reichenbach P, Guzzetti F, Rossi M, Poesen J (2009) Combined landslide inventory and susceptibility assessment based on different mapping units: an example from the Flemish Ardennes, Belgium. Nat Hazards Earth Syst Sci 9:507–521

    Google Scholar 

  • Van Vliet J, White R, Dragicevic S (2009) Modelling urban growth using a variable grid cellular automaton. Comput Environ Urban Syst 33:35–43

    Google Scholar 

  • Van Westen CJ, Van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 65:167–184

    Google Scholar 

  • Van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102:112–131

    Google Scholar 

  • Van Westen CJ, Ghosh S, Jaiswal P, Martha TR, Kuriakose SL (2013) From landslide inventories to landslide risk assessment; an attempt to support methodological development in India. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice. Springer, Berlin, pp 3–20

    Google Scholar 

  • Vaz E, Arsanjani JJ (2015) Predicting urban growth of the Greater Toronto Area - coupling a Markov cellular automata with document meta-analysis. J Environ Inf 25(2):71–80

    Google Scholar 

  • Vázquez-Quintero G, Solís-Moreno R, Pompa-García M, Villarreal-Guerrero F, Pinedo-Alvarez C, Pinedo-Alvarez A (2016) Detection and projection of forest changes by using the Markov chain model and cellular automata. Sustainability 8:236. https://doi.org/10.3390/su8030236

    Google Scholar 

  • Vergari F, Della Seta M, Del Monte M, Fredi P, Palmieri L (2011) Landslide susceptibility assessment in the Upper Orcia Valley (Southern Tuscany, Italy) through conditional analysis: a contribution to the unbiased selection of causal factors. Nat Hazards Earth Syst Sci 11:1475–1497

    Google Scholar 

  • Wang LJ, Guo M, Sawada K, Lin J, Zhang J (2015) Landslide susceptibility mapping in Mizunami City, Japan: a comparison between logistic regression, bivariate statistical analysis and multivariate adaptive regression spline models. Catena 135:271–282

    Google Scholar 

  • Zêzere JL (2002) Landslide susceptibility assessment considering landslide typology. A case study in the area north of Lisbon (Portugal). Nat Hazards Earth Syst Sci 2:73–82

    Google Scholar 

  • Zêzere JL, Trigo R (2011) Impacts of the North Atlantic Oscillation on landslides. In: Vicente-Serrano S, Trigo R (eds) Hydrological, socioeconomic and ecological impacts of the North Atlantic Oscillation in the Mediterranean Region, advances in global change research, vol 46, pp 199–212

    Google Scholar 

  • Zêzere JL, Ferreira AB, Rodrigues ML (1999a) The role of conditioning and triggering factors in the occurrence of landslides: a case study in the area north of Lisbon (Portugal). Geomorphology 30:133–146

    Google Scholar 

  • Zêzere JL, Ferreira AB, Rodrigues ML (1999b) Landslides in the north of Lisbon region (Portugal): conditioning and triggering factors. Phys Chem Princ Geomorph 24(10):925–934

    Google Scholar 

  • Zêzere JL, Reis E, Garcia R, Oliveira S, Rodrigues ML, Vieira G, Ferreira AB (2004) Integration of spatial and temporal data for the definition of different landslide hazard scenarios in the area north of Lisbon (Portugal). Nat Hazards Earth Syst Sci 4(1):133–146

    Google Scholar 

  • Zêzere JL, Trigo RM, Trigo IF (2005) Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): assessment of relationships with the North Atlantic Oscillation. Nat Hazards Earth Syst Sci 5:331–344

    Google Scholar 

  • Zêzere JL, Trigo RM, Fragoso M, Oliveira SC, Garcia RAC (2008) Rainfall-triggered landslides in the Lisbon region over 2006 and relationships with North Atlantic oscillation. Nat Hazards Earth Syst Sci 8:483–499

    Google Scholar 

  • Zêzere JL, Vaz T, Pereira S, Oliveira SC, Marques R, Garcia RAC (2015) Rainfall thresholds for landslide activity in Portugal: a state of the art. Environ Earth Sci 73(6):2917–2936

    Google Scholar 

  • Zêzere JL, Pereira S, Melo R, Oliveira SC, Garcia RAC (2017) Mapping landslide susceptibility using data-driven methods. Sci Total Environ 589:250–267

    Google Scholar 

  • Zizioli D, Meisina C, Valentino R, Montrasio L (2013) Comparison between different approaches to modelling shallow landslide susceptibility: a case history in Oltrepo Pavese, Northern Italy. Nat Hazards Earth Syst Sci 13:559–573

    Google Scholar 

Download references

Funding

This work was financed by national funds through FCT—Portuguese Foundation for Science and Technology, I.P., under the framework of the project BeSafeSlide—Landslide Early Warning soft technology prototype to improve community resilience and adaptation to environmental change (PTDC/GES-AMB/30052/2017) and by the Research Unit UID/GEO/00295/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Melo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melo, R., Zêzere, J.L., Rocha, J. et al. Combining data-driven models to assess susceptibility of shallow slides failure and run-out. Landslides 16, 2259–2276 (2019). https://doi.org/10.1007/s10346-019-01235-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-019-01235-2

Keywords

Navigation