Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Botanical Pesticides and Their Mode of Action

RETRACTED ARTICLE: Botanische Pestizide und ihre Wirkmechanismen

  • Review Article
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

This article was retracted on 23 February 2018

Abstract

Pest management is facing economic and ecological challenge worldwide due to human and environmental hazards caused by majority of the synthetic pesticide chemicals. Identification of novel effective insecticidal compounds is essential to combat increasing resistance rates. Botanical pesticides have long been touted as attractive alternatives to synthetic chemical pesticides for pest management because botanicals reputedly pose little threat to the environment or to human health. The body of scientific literature documenting bioactivity of plant derivatives to arthropod pests continues to expand, yet only a handful of botanicals are currently used in agriculture in the industrialized world, and there are few prospects for commercial development of new botanical products. Pyrethrum and neem are well established commercially, pesticides based on plant essential oils have entered the marketplace, and the use of rotenone appears to be waning. A number of plant substances have been considered for use as pest antifeedants, repellents and toxicants, but apart from some natural mosquito repellents, a little commercial success has ensued for plant substances that modify arthropod behavior. Several factors appear to limit the success of botanicals, most notably regulatory barriers and the availability of competing products (newer synthetics and fermentation products) that are cost-effective and relatively safe compared with their predecessors. In the context of agricultural pest management, botanical pesticides are best suited for use in organic food production in industrialized countries but can play a much greater role in the production and postharvest protection of food in developing countries.

Botanicals have been in use for a long time for pest control. The compounds offer many environmental advantages. However, their uses during the 20th century have been rather marginal compared with other bio-control methods of pests and pathogens. Improvement in the understanding of plant allelochemical mechanisms of activity offer new prospects for using these substances in crop protection. I’m trying in this article to present different kinds of botanical pesticides came from different recourses and their mode of actions as well as I will try to examine the reasons behind their limited use (disadvantages) and the actual crop protection developments involving biopesticides of plant origin for organic or traditional agricultures to keep our environment clean and safer for humankind and animals.

Zusammenfassung

Die Schädlingsbekämpfung mit chemisch-synthetischen Pestiziden steht weltweit vor wirtschaftlichen und ökologischen Herausforderungen. Die Identifizierung neuer effektiver insektizider Verbindungen ist wichtig, um die zunehmend auftretenden Resistenzen zu bekämpfen. Botanische Pestizide sind seit langem als attraktive Alternativen zu chemisch-synthetischen Pestiziden zur Schädlingsbekämpfung angekündigt worden, weil Pestizide aus pflanzlicher Herkunft weniger Gefahren für die Umwelt und/oder die menschliche Gesundheit birgen. Die wissenschaftliche Literatur dokumentiert eine Vielzahl von Untersuchungen zur Bioaktivität pflanzlichen Stoffe deren Derivate geeignet sind, gegen Arthropoden als Schädlinge eingesetzt zu werden. Aktuell werden aber nur eine Handvoll pflanzlicher Stoffe in der Landwirtschaft in den Industrieländern verwendet. Es gibt nur wenige Hinweise auf eine wirtschaftliche Entwicklung der neuen botanischen Produkte. Zum Beispiel sind die Wirkstoffe Pyrethrum und Neem kommerziell gut etabliert und auch Pestizide auf Basis pflanzlicher ätherischer Ölen sind am Markt zu finden. Der Einsatz von Rotenon scheint aufgrund von Nebenwirkungen zu schwinden. Eine Reihe von pflanzlichen Substanzen sind interessant für den Einsatz als Fraßhemmer, und als Repellents, aber abgesehen von einigen natürlichen Insektenschutzmitteln gibt es kaum kommerziellen Einsatz für die pflanzlichen Substanzen. Mehrere Faktoren begrenzen den Erfolg von pflanzlichen Stoffen, hier sind zum Beispiel regulatorische Barrieren zu nennen.

Im Zusammenhang mit der landwirtschaftlichen Schädlingsbekämpfung, sind botanische Pestizide bestens für den Einsatz in der ökologischen Bio-Produktion in den Industrieländern geeignet, sie können aber auch eine größere Rolle bei der Begrenzung von Nachernte- und Lagerverlusten spielen. Die Verbindungen bieten viele Vorteile für die Umwelt. Allerdings sind ihre Anwendungen im 20. Jahrhundert eher marginal im Vergleich zu anderen Verfahren zur Kontrolle von Schädlingen und Krankheitserregern. Die Verbesserungen bei der Aufklärung der Mechanismen der Pflanzen mit allelochemischer Aktivität bieten neue Perspektiven für die Verwendung dieser Stoffe als Pflanzenschutzmitteln. In dem vorliegenden Artikel werden verschiedene Wirkmechanismen von Bio-Pestiziden vorgestellt und Gründe für den derzeit begrenzten Einsatz genannt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abd El-Aziz SE, El-Hawary FMA (1997) Inhibitory effects of some essential oils on the development of the cotton leafworm, Spodoptera littoralis (Boisd.). J Egypt German Soc Zool 22:117–130

    Google Scholar 

  • Abd El-Aziz SE, Sharaby AM (1997) Some biological effects of white mustard oil, Brassica alba against the cotton leafworm, Spodoptera littoralis (Boisd.). A Schädlingskunde, Pflanzenschutz, Umweltschutz 70:62–64

    Google Scholar 

  • Abdallah SA, Barakat AA, Badawy HMA, Soliman MMM (2004) Insecticidal activity of different wild plant extracts against Aphis craccivora Koch. Egypt J Biol Pest Control 14:165–173

    Google Scholar 

  • Abdelgaleil SAM (2010) Molluscicidal and insecticidal potential of monoterpenes on the white gardensnail, Theba pisana (Muller) and the cotton leafworm, Spodoptera littoralis (Boisd.). Appl Entomol Zool 45:425–433

    Article  CAS  Google Scholar 

  • Abdelgaleil SAM, El-Aswad AF (2005) Antifeedant and growth inhibitory effects of Tetranortriterpenoids isolated from three Meliaceous species on the cotton leafworm, Spodoptera littoralis (Boisd.). J Appl Sci Res 1:234–241

    Google Scholar 

  • Abdelgaleil SA, Abbassy MA, Belal AS, Abdel Rasoul MA (2008) Bioactivity of two major constituents isolated from the essential oil of Artemisia judaica L. Bioresource Technol 99:5947–5950

    Article  CAS  Google Scholar 

  • Abdel-Khalek AA, Amer SA, Momen FM (2010) Repellency and toxicity of extract from Francoeria crispa (Forssk) to Eutetranychus orientalis (Klein) (Acari: Tetranychidae). Archiv Phytopathol & Plant Prot 44:441–445

    Article  Google Scholar 

  • Adel MM, El-Hawary FM, Abdel-Aziz NF, Sammour EA (2010) Some physiological, biochemical and histopathological effects of Artemisia monosperma against the cotton leafworm, Spodoptera littoralis. Arch Phytopathol & Plant Prot 43:1098–1110.

    Article  CAS  Google Scholar 

  • Akhtar Y, Rankin CH, Isman MB (2003) Decreased response to feeding deterrents following prolonged exposure in the larvae of a generalist herbivore, Trichoplusia ni (Lepidoptera: Noctuidae). J Insect Behav 16:811–831

    Article  Google Scholar 

  • Alburo R, Olofson H (1987) Agricultural history and the use of botanical insecticides in Argao, Cebu. Philipp Quar Cul & Soc 15:151–172

    Google Scholar 

  • Allan EJ, Eeswara JP, Jarvis AP, Mordue Luntz AJ, Morgan ED, Stuchbury T (2002) Induction of hairy root cultures of Azadirachta indica A. Juss. and their production of azadirachtin and other important insect bioactive metabolites. Plant Cell Rep 21:374–379

    Article  CAS  Google Scholar 

  • Amer SA, Momen FM (2002) Effect of some essential oil on predacious mite Amblyseius swirskii (Phytoseiidae). Acta Phyto Entomol Hung 37:281–286

    Article  CAS  Google Scholar 

  • Amer SA, Momen FM (2005) Effect of French lavender essential oil on some predacious mites of the family Phytoseiidae. Acta Phyto Entomol Hung 40:409–415

    Article  CAS  Google Scholar 

  • Antonious GF (2004) Residues and halflives of pyrethrins on field-grown pepper and tomato. J Environ Sci Health B39:491–503

    Article  CAS  Google Scholar 

  • Arcury TA, Quandt SA, Bart DB, Hoppin JA, McCauley L, Grzywacs JG, Robson MG (2006) Farmworker exposure to pesticides: methodology issues for the collection of comparable data. Environ Health Persp 11:923–928

    Article  CAS  Google Scholar 

  • Ascher KRS, Schmutterer H, Mazor M, Zebitz CPW, Naqvi SNH (2002) The Persian lilac or chinaberry tree: Melia azedarach L. Neem Found, Mumbai, pp 770–820

  • Atkinson BL, Blackman AJ, Faber H (2004) The degradation of the natural pyrethrins in crop storage. J Agric Food Chem 52:280–287

    Article  CAS  PubMed  Google Scholar 

  • Auger J, Thibout E (2002) Substances soufrées des Allium et des Crucifères et leurs potentialités phytosanitaires. In: Regnault-Roger C, Philogène BJR, Vincent C (eds) Biopesticides d’Origine Végétale. Lavoisier Tech & Doc, Paris, pp 77–95

  • Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils. Food Chem Toxicol 46:446–475

    Article  CAS  PubMed  Google Scholar 

  • Belmain S, Stevenson P (2001) Ethnobotanicals in Ghana: reviving and modernizing age-old farmer practice. Pestic Outlook 12:233–338

    Article  Google Scholar 

  • Belmain SR, Neal GE, Ray DE, Golob P (2001) Insecticidal and vertebrate toxicity associated with ethnobotanicals used as post-harvest protectants in Ghana. Food Chem Toxicol 39:287–291

    Article  CAS  PubMed  Google Scholar 

  • Bernays EA (1990) Plant secondary compounds deterrent but not toxic to the grass specialist acridid Locusta migratoria: implications for the evolution of graminivory. Entomol Exp Appl 54:53–56

    Article  CAS  Google Scholar 

  • Bernays EA (1991) Relationship between deterrence and toxicity of plant secondary compounds for the grasshopper Schistocerca americana. J Chem Ecol 17:2519–2526

    Article  CAS  PubMed  Google Scholar 

  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systematic pesticide exposure reproduces features of Parkinson’s disease. Nature Neurosci 3:1301–1306

    Article  CAS  PubMed  Google Scholar 

  • Bloomquist JR (1996) Ion channels as targets for insecticides. Ann Rev Entomol 41:163–190

    Article  CAS  Google Scholar 

  • Bloomquist JR (2003) Chloride channels as tools for developing selective insecticides. Arch Insect Biochem & Physiol 54:145–156

    Article  CAS  Google Scholar 

  • Bloomquist JR, Boina DR, Chow E, Carlier PR, Reina M, Gonzalez-Coloma A (2008) Mode of action of the plant-derived silphinenes on insect and mammalian GABAA receptor/chloride channel complex. Pestici Biochem & Physiol 91:17–23

    Article  CAS  Google Scholar 

  • Boeke SJ, Baumgart IR, van Loon JJA, van Huis A, Dicke M, Kossou DK (2004a) Toxicity and repellence of African plants traditionally used for the protection of stored cowpea against Callosobruchus maculatus. J Stored Prod Res 40:423–438

  • Boeke SJ, Kossou DK, van Huis A, van Loon JJA, Dicke M (2004b) Field trials with plant products to protect stored cowpea against insect damage. Int J Pest Manag 50:1–9

  • Bomford MK, Isman MB (1996) Desensitization of fifth instar Spodoptera litura (Lepidoptera: Noctuidae) to azadirachtin and neem. Entomol Exp Appl 81:307–313

    Article  CAS  Google Scholar 

  • Bradbury SP, Coats JR (1989) Comparative toxicology of the pyrethroid insecticides. Rev Environ Contam Toxicol 108:134–177

    Google Scholar 

  • Brown AE (2005) Mode of action of insecticides and related pest control chemicals for production agriculture, ornamentals and turf. Pesticide Info Leaflet Nr 43:1–13. http://pesticide.umd.edu

  • Buckle J (2003) Clinical aromatherapy: essential oils in practice. Churchill Livingstone, Edinburgh, p 416

    Google Scholar 

  • Bussaman P, Namsena P, Rattanasena P, Chandrapatya A (2012a) Effect of crude leaf extracts on Colletotrichum gloeosporioides (Penz.) Sacc. Psyche, Article ID 309046, pp 1–6. doi:10.1155/2012/309046

  • Bussaman P, Sa-uth C, Rattanasena P, Chandrapatya A (2012b) Effect of crude plant extracts on Mushroom Mite, Luciaphorus sp. (Acari: Pygmephoridae). Psyche, Article ID 150958, pp 1–5. doi:10.1155/2012/150958

  • Buta JG, Lusby WR, Neal JW Jr, Waters RM, Piuarelli GW (1993) Sucrose esters from Nicotiana gossei active against the greenhouse whitefly, Ttialeurodes vaporatiorwll. Phytochemistry 22:859–864

    Article  Google Scholar 

  • Cabizza M, Angioni A, Melis M, Cabras M, Tuberoso CV, Cabras P (2004) Rotenone and rotenoids in cubé resins, formulations, and residues on olives. J Agric Food Chem 52:288–293

    Article  CAS  PubMed  Google Scholar 

  • Caboni P, Cabras M, Angioni A, Russo M, Cabras P (2002) Persistence of azadirachtin residues on olives after field treatment. J Agric Food Chem 50:3491–3494

    Article  CAS  PubMed  Google Scholar 

  • Cabras P, Caboni P, Cabras M, Angioni A, Russo M (2002) Rotenone residues on olives and in olive oil. J Agric Food Chem 50:2576–2580

    Article  CAS  PubMed  Google Scholar 

  • Cagen SZ, Malley LA, Parker CM, Cardiner TH, van Gelder GA, Jud VA (1984) Pyrethroid-mediated skin sensory stimulation characterized by a new behavioral paradigm. Toxicol Appl Pharmacol 76:270–279

    Article  CAS  PubMed  Google Scholar 

  • Carpinella MC, Defago MT, Valladares G, Palacios SM (2003) Antifeedant and insecticide properties of a limonoid from Melia azedarach (Meliaceae) with potential use for pest management. J Agric Food Chem 51:369–374

    Article  CAS  PubMed  Google Scholar 

  • Casanova H, Ortiz C, Pel’aez C, Vallejo A, Moreno ME, Acevedo M (2002) Insecticide formulations based on nicotine oleate stabilized by sodium caseinate. J Agric Food Chem 50:6389–6394

    Article  CAS  PubMed  Google Scholar 

  • Casida JE (1973) Pyrethrum the natural insecticide. Academic Press, New York, p 329

    Google Scholar 

  • Casida JE, Quistad GB (1995) Pyrethrum flowers: production, chemistry, toxicology and uses. Oxford Univ Press, Oxford, p 356

    Google Scholar 

  • CDPR (California Department of Pesticide Regulation) (2005) Summary of pesticide use report data 2003, indexed by chemical. http://www.cdpr.ca.gov/ (Accessed: 25 March 2013)

  • Céspedes CL, Calderón JS, Lina L, Aranda E (2000) Growth inhibitory effects on fall armyworm Spodoptera frugiperda of some limonoids isolated from Cedrela spp (Meliaceae). J Agric Food Chem 48:1903–1908

    Article  PubMed  CAS  Google Scholar 

  • Céspedes CL, Avila JG, Marin JC, Domínguez ML, Torres P, Aranda E (2006) Natural compounds as antioxidant and molting inhibitors can play a role as a model for search of new botanical pesticides, Rai and Carpinella (eds) Naturally Occurring Bioactive Compounds, ISBN-13:978–0-444-52241-2, Chapter 1:1–27

    Google Scholar 

  • Charleston DS (2004) Integrating biological control and botanical pesticides for management of Plutella xylostella. PhD Thesis Wageningen Univ, p 176

  • Chen W, Isman MB, Chiu SF (1995) Antifeedant and growth inhibitory effects of the limonoid toosendanin and Melia toosendan extracts on the variegated cutworm, Peridroma saucia (Lep., Noctuidae). J Appl Entomol 119:367–370

    Article  Google Scholar 

  • Childs FJ, Chamberlain JR, Antwi EA et al (2001) Improvement of neem and its potential benefits to poor farmers. Dept of Internat Develop, UK, p 32

  • Chiu SF (1988) Recent advances in research on botanical insecticides in China. In: Arnason AT, Philogène BJR, Morand P (eds) Insecticides of plant origin. American Chemical Society, Washington, DC. pp 69–77

    Google Scholar 

  • Coats JR (1990) Mechanisms of toxic action and structure-activity relationships for organochlorine and synthetic pyrethroid insecticides. Environ Health Perspect 87:255–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coats JR (1994) Risks from natural versus synthetic insecticides. Annu Rev Entomol 39:489–515

    Article  CAS  PubMed  Google Scholar 

  • Coats JR, Symonik DM, Bradbury SP, Dyer SD, Timson LK, Atchison GJ (1989) Toxicology of synthetic pyrethroids in aquatic organisms: an overview. Environ Toxicol Chem 8:671–679

    Article  CAS  Google Scholar 

  • Coats JR, Karr LL, Drewes CD (1991) Toxicity and neurotoxic e!ects of monoterpenoids in insects and earthworms. Am Chem Soc Symp Ser 449:306–316

    Google Scholar 

  • Coppen JJW (1995) Flavours and fragrances of plant origin. Food and Agriculture Organization, Rome, p 101

    Google Scholar 

  • Copping LG (2001) The biopesticide manual, 2nd edn. British Crop Protection Council, Farnham, p 528

    Google Scholar 

  • Copping LG, Menn JJ (2000) Biopesticides: a review of their action, applications and efficacy. Pest Manag Sci 56:651–676

    Article  CAS  Google Scholar 

  • Davies IH (1985) The pyrethroids: an historical introduction. In: Leahey JP (ed) The pyrethroid insecticides. Taylor and Francis, Philadelphia, p 440

    Google Scholar 

  • Delaplane KS (1992) Controlling tracheal mites (Acari: Tarsonemidae) in colonies of honey bees (Apidae) with vegetable oil and menthol. J Econ Entomol 85:2118–2124

    Article  CAS  Google Scholar 

  • Deng AL, Ogendo JO, Owuor G, Bett PK, Omolo EO, Mugisha-Kamatenesi M, Mihale JM (2009) Factors determining the use of botanical insect pest control methods by small-holder farmers in the Lake Victoria basin, Kenya. African J Environ Sci & Technol 3:108–115

    Google Scholar 

  • Dev S, Koul O (1997) Insecticides of natural origin. Harwood Acad, Amsterdam, p 365

    Google Scholar 

  • Dimetry NZ (2012) Prospects of botanical pesticides for the future in integrated pest management programme (IPM) with special reference to neem uses in Egypt. Arch Phytopathol & Plant Prot 45:1138–1161

    Article  CAS  Google Scholar 

  • Dimetry NZ, El-Hawary FMA (1997) Synergistic effect of some additives on the biological activity and toxicity of Neem-based formulations against the cowpea aphid, Aphis craccivora Koch. Internat J Tropical Insect Sci 17:395–399

    Article  CAS  Google Scholar 

  • Dimetry NZ, Amer SAA, Reda AS (1993) Biological activity of 2 Neem seed kernel extracts against the 2-spotted spider mite Tetranychus urticae. J Appl Entomol 116: 308–312

    Article  Google Scholar 

  • Dimetry NZ, Abd El-Salam AME, El-Hawary FMA (2010) Importance of plant extract formulations in managing different pests attacking beans in new reclaimed area and under storage conditions. Arch Phytopathol & Plant Prot 43:700–711

    Article  Google Scholar 

  • Dosemeci M, Alavanja MC, Rowland AS, Mage D, Zahm SH, Rothman N, Lubin JH, Hoppin JA, Sandler DP, Blair A (2002) A quantitative approach for estimating exposure to pesticides in the agricultural health study. Ann Occup Hyp 46:245–260

    CAS  Google Scholar 

  • El-Sayed EI (1982–1983a) Evaluation of the insecticidal properties of the common Indian neem (Azadirachta Indica A Juss) seeds against the Egyptian cotton leaf worm (Spodoptera litoralis) (Boisd.). Bull Entomol Soc Egypt, Econ Ser 13:39–47

    Google Scholar 

  • El-Sayed EI (1982–1983b) Neem (Azadirachta indica A. Juss) seeds as antifeedant and ovipositional repellent for the Egyptian cotton leafworm Spodoptera littoralis (Boisd.). Bull Entomol Soc Egypt, Econ Ser 13:49–58

    Google Scholar 

  • El-Hawary FMA, Sammour EA (2006) The bioactivity and mechanism of action of some wild plant extracts on Aphis craccivora. Bull NRC, Egypt 31:545–556

    CAS  Google Scholar 

  • El-Hosary RA (2011) Evaluation of some essential oils against Sesamia cretica Led. under field conditions. J Am Sci 7:563–568

    Google Scholar 

  • El-Sebai TN, El-Wakeil NE, Abdallah SA (2005) Efficacy of certain mineral, natural oils and insecticides against the Whitefly, Bemisia tabaci on cucumber plants and their side effects on the associated predators. Bull Entomol Soc Egypt, Econ Ser 31:229–241

    Google Scholar 

  • El-Shazly AM, Dora G, Wink M (2005) Alkaloids of Haloxylon salicornicum (Moq.) Bunge ex Boiss. (Chenopodiaceae). Pharmazie 60:949–952

    CAS  PubMed  Google Scholar 

  • El-Wakeil NE, Gaafar N, Vidal S (2006) Side effect of some neem products on natural enemies of Helicoverpa, Trichogramma spp. And Chrysoperla carnea. Archiv Phytopathol & Plant Prot 39:445–455

    Article  Google Scholar 

  • El-Wakeil N, Gaafar N, Sallam A, Volkmar C (2013) Side effects of insecticide applications on natural enemies and possibility of integration in plant protection strategies. Published in book “Insecticides: development of safer and more effective technologies” (ISBN 978-953-51-0958-7) Intech Open Access Publisher, pp 3–56

  • Enan E (2001) Insecticidal activity of essential oils: octopaminergic sites of action. Comp Biochem Physiol 130C:325–337

    CAS  Google Scholar 

  • Enan EE (2005a) Molecular and pharmacological analysis of an octopamine receptor from American cockroach and fruit fly in response to plant essential oils. Arch Insect Biochem & Physiol 59:161–171

  • Enan EE (2005b) Molecular response of Drosophila melanogaster tyramine receptor cascade to plant essential oils. Insect Biochem & Molec Biol 35:309–321

  • Fang N, Casida J (1998) Anticancer action of cubè insecticide: correlation for rotenoid constituents between inhibition of NADH-ubiquinone oxidoreductase and induced ornithine decarboxylase activities. Proc. Natl Acad Sci USA 95:3380–3384

    Article  CAS  Google Scholar 

  • Farone WA, Palmer T, Puterka J (2002) Polyol ester insecticides and method of synthesis. U.S. Patent 6,419,941

  • Feng R, Chen W, Isman MB (1995) Synergism of malathion and inhibition of midgut esterase activities by an extract from Melia Toosendan (Meliaceae). Pestic Biochem Physiol 53:34–41

    Article  CAS  Google Scholar 

  • Fields PG, Xie YS, Hou X (2001) Repellent effect of pea (Pisum sativum) fractions against stored-product pests. J Stored Prod Res 37:359–370

    Article  PubMed  Google Scholar 

  • Floris I, Satta A, Cabras P, Garau VL, Angioni A (2004) Comparison between two thymol formulations in the control of Varroa destructor: effectiveness, persistence and residues. J Econ Entomol 97:187–191

    Article  CAS  PubMed  Google Scholar 

  • Forget G, Goodman T, de Villiers A (eds) (1993) Impact of pesticide use on health in developing countries. Int Dev Res Centre, Ottawa p 335

  • Fradin MS, Day JF (2002) Comparative efficacy of insect repellents against mosquito bites. N Engl J Med 347:13–18

    Article  CAS  PubMed  Google Scholar 

  • Gilkeson LA, Adams RW (2000) Integrated pest management manual for landscape pests in British Columbia. Province of British Columbia Press, p 130

  • Glynne-Jones A (2001) Pyrethrum. Pestic Outlook 12:195–198

    Article  Google Scholar 

  • Gonzalez-Coloma A, Valencia F, Martin N, Hoffmann JJ, Hutter L et al (2002) Silphinene sesquiterpenes as model insect antifeedants. J Chem Ecol 28:117–129

    Article  CAS  PubMed  Google Scholar 

  • Grundy DL, Still CC (1985) Inhibition of acetylcholinesterases by pulegone1, 2- epoxide. Pestici Biochem & Physiol 23:383–388

    Article  CAS  Google Scholar 

  • Guerrero A, Rosell G (2004) Enzyme inhibitors in biorational approaches for pest control. Mini-Rev Med Chem 4:757–767

    CAS  PubMed  Google Scholar 

  • Guerrero A, Rosell G (2005) Biorational approaches for insect control by enzymatic inhibition. Curr Med Chem 12:461–469

    Article  CAS  PubMed  Google Scholar 

  • Hayes WJ Jr (1982) Pesticides studied in man. Williams & Wilkins, Baltimore, p 672

    Google Scholar 

  • Haynes KF (1988) Sublethal effects of neurotoxic insecticides on insect behaviour. Ann Rev Entomol 33:149–168

    Article  CAS  Google Scholar 

  • Hedin PA, Hollingworth RM, Masler EP, Miyamoto J, Thompson DG (eds) (1997) Phytochemicals for pest control. American Chemical Society, Washington, DC, p 372

    Book  Google Scholar 

  • Henk PM, Vijverberg JM, Van Der Zalm, Van Den Bercken J (1982) Similar mode of action of pyrethroids and DDT on sodium channel gating in myelinated nerves. Nature 295:601–603. doi:10.1038/295601a0

    Article  Google Scholar 

  • Henn T, Weinzierl R, Gray M, Steffey K (1991) Alternatives in insect management: field and forage crops. Cooperative extension service, University of Illinois at Urbana-Champaign, Circ. 1307

  • Hollingworth R, Ahmmadsahib K, Gedelhak G, McLaughlin J (1994) Newinhibitors of complex I of the mitochondrial electron transport chain with activity as pesticides. Biochem Soc Trans 22:230–233

    Article  CAS  PubMed  Google Scholar 

  • Hussein HI (2005) Composition of essential oils isolated from three plant species and their molluscicidal activity against Theba pisana snails. J Pest Cont Environ Sci 13:15–24

    Google Scholar 

  • Immaraju JA (1998) The commercial use of azadirachtin and its integration into viable pest control programmes. Pestic Sci 54:285–289

    Article  CAS  Google Scholar 

  • Ismail AI, Abd El-Salam AME, Soliman MMM (2004) Field evaluation of plant derivative and chemical compounds and their mixtures against Ceroplastes floridensis Com. on orange trees. Egypt J Biol Pest Control 14:175–179

    Google Scholar 

  • Isman MB (1993) Growth inhibitory and antifeedant effects of azadirachtin on six noctuids of regional economic importance. Pestic Sci 38:57–63

    Article  CAS  Google Scholar 

  • Isman MB (1997) Neem and other botanical insecticides: barriers to commercialization. Phytoparasitica 25:339–344

    Article  Google Scholar 

  • Isman MB (1999) Pesticides based on plant essential oils. Pestic Outlook 10:68–72

    CAS  Google Scholar 

  • Isman MB (2000) Plant essential oils for pest and disease management. Crop Prot 19:603–608

    Article  CAS  Google Scholar 

  • Isman MB (2002) Insect antifeedants. Pestic Outlook 13:152–157

    Article  CAS  Google Scholar 

  • Isman MB (2004) Factors limiting commercial success of neem insecticides in North America and Western Europe. In: Koul O, Wahab S (eds) Neem: today and in the new millennium. Kluwer Acad, Dordrecht, p 33–41

    Chapter  Google Scholar 

  • Isman MB (2005) Problems and opportunities for the commercialization of botanical insecticides. In Regnault-Roger C, Philogène BJR, Vincent C (eds) Biopesticides of plant origin. Lavoisier, Paris, pp 283–291

    Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  CAS  PubMed  Google Scholar 

  • Isman MB (2008) Botanical insecticides: for richer, for poorer. Pest Manag Sci 64:8–11

    Article  CAS  PubMed  Google Scholar 

  • Isman MB, Matsuura H, MacKinnon S, Durst T, Towers GHN, Arnason JT (1996) Phytochemistry of the Meliaceae. So many terpenoids, so few insecticides. In: Romeo JT, Saunders JA, Barbosa P (eds) Phytochemical diversity and redundancy. Plenum, New York, pp 155–178

    Chapter  Google Scholar 

  • Jacobson M (ed) (1989) Focus on phytochemical pesticides, vol 1: the neem tree. CRC Press, Boca Raton, p 178

    Google Scholar 

  • Johnson HA, Oberlies NH, Alali FQ, McLaughlin JE (2000) Thwarting resistance: annonaceous acetogenins as new pesticidal and antitumor agents. In Cutler SJ, Cutler JG (eds) Biological active natural products: pharmaceuticals. Boca Raton, CRC Press, pp 173–83

  • Jayasekara TK, Stevenson PC, Hall DR, Belmain SR (2005) Effect of volatile constituents from Securidaca longepedunculata on insect pests of stored grain. J Chem Ecol 31:303–313

    Article  CAS  PubMed  Google Scholar 

  • Katz J, Prescott K, Woolf AD (1996) Strychnine poisoning from a Cambodian traditional remedy. Am J Emerg Med 14:475–477

    Article  CAS  PubMed  Google Scholar 

  • Keane S, Ryan MF (1999) Purification, characterisation and inhibition of monoterpenes of acetylcholonesterase from the waxmoth, Galleria melonella. Insect Biochem & Molec Biol 29:1097–1104

    Article  CAS  Google Scholar 

  • Khambay BP, Batty D, Jewess PJ, Bateman GL, Hollomon DW (2003) Mode of action and pesticidal activity of the natural product dunnione and of some analogues. Pest Manag Sci 59:174–182

    Article  CAS  PubMed  Google Scholar 

  • Khater HF (2012) Ecosmart biorational insecticides: alternative insect control strategies, insecticides- advances in integrated pest management, ed F Perveen, ISBN: 978-953-307-780-2, InTech publisher, pp 17–60

  • Klein Gebbinck EA, Jansen BJM, de Groot A (2002) Insect antifeedant activity of clerodane dieterpenes and related model compounds. Phytochemistry 61:737–770

    Article  CAS  PubMed  Google Scholar 

  • Kostyukovsky M, Rafaeli A, Gileadi C, Demchenko N, Shaaya E (2002) Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest Manag Sci 58:1101–1106

    Article  CAS  PubMed  Google Scholar 

  • Koul O, Dhaliwal GS (2001) Phytochemical biopesticides. Harwood Acad, Amster, p 223

    Google Scholar 

  • Kraus W (2002) Azadirachtin and other triterpenoids. Neem Found, Mumbai, pp 39–111

  • Kubo I (2000) Tyrosinase inhibitors from plants. Rev Latinoamer Quim 28:7–20

    CAS  Google Scholar 

  • Kukel CF, Jennings KR (1994) Delphinium alkaloids as inhibitors of alpha-bungarotoxin binding to rat and insect neural membranes. Can J Physiol & Pharmacol 72:104–107

    Article  CAS  Google Scholar 

  • Kurita N, Miyaji M, Kurane R, Takahara Y (1981) Antifungal activity of components of essential oils. Agric Biol Chem 45:945–952

    CAS  Google Scholar 

  • Leatemia JA, Isman MB (2004a) Efficacy of crude seed extracts of Annona squamosa against Plutella xylostella L. in the greenhouse. Int J Pest Manag 50:129–133

  • Leatemia JA, Isman MB (2004b) Insecticidal activity of crude seed extracts of Annona spp., Lansium domesticum and Sandoricum koetjape against lepidopteran larvae. Phytoparasitica 32:30–37

  • Lewis MA, Arnason JT, Philogene, BJR, Rupprecht JK, Mclaughlin JL (1993) Inhibition of respiration at site I by Asimicin, an insecticidal Acetogenin of the Pawpaw, Asimina triloba (Annonaceae). Pestic Biochem & Physiol 45:15–23

    Article  CAS  Google Scholar 

  • Londershausen M, Leight W, Lieb F, Moeschler H (1991) Molecular mode of action of annonins. Pestic Sci 33:427–438

    Article  CAS  Google Scholar 

  • Lowery DT, Isman MB (1995) Toxicity of neem to natural enemies of aphids. Phytoparasitica 23:297–306

    Article  CAS  Google Scholar 

  • Maistrello L, Henderson G, Laine RA (2004) Efficacy of vetiver oil and nootkatone as soil barriers against Formosan subterranean termite. J Econ Entomol 94:1532–1537

    Article  Google Scholar 

  • Marco GJ, Hollingworth RM, Durham W (eds) (1987) Silent Spring Revisited. American Chemical Society, Washington, DC, p 214

    Google Scholar 

  • Matsuzaki T, Shinozaki Y, Suhara S, Tobita T, Shigematsu H, Koiwai A (1991) Leaf surface glycolipids from Nicotiana acuminate & Nicotiana pauciflora. Agric Biol Chem 55:1417–1419

    CAS  Google Scholar 

  • McLaughlin GA (1973) History of pyrethrum. Academic, New York, pp 3–15

    Google Scholar 

  • McLaughlin JL, Zeng L, Oberlies NJ, Alfonso D, Johnson JA, Cummings BA (1997) Annonaceous acetogenins as new natural pesticides: recent progress. Washington, DC Am Chem Soc, pp 117–133

    Google Scholar 

  • Mikolajczak KL, McLaughlin JL, Rupprecht JK (1988) Control of Pests with Annonaceous Acetogenins. (divisional patent on asimicin) U.S. Patent No. 4,855,319

  • Miyazawa M, Watanabe H, Kameoka H (1997) Inhibition of acetylcholinesterase activity by monoterpenoids with a pmenthane skeleton. J Agric & Food Chem 45:677–679

    Article  CAS  Google Scholar 

  • Moeschler HF, Pfuger W, Wendlisch D (1987) Pure annonin and a process for the preparation thereof. U.S. Patent No. 4,689,323

  • Morse S, Ward A, McNamara N, Denholm I (2002) Exploring the factors that influence the uptake of botanical insecticides by farmers: a case study of tobacco-based products in Nigeria. Exp Agric 38:469–479

    Article  CAS  Google Scholar 

  • Narahashi T (1976) Effects of insecticides on nervous conduction and synaptic transmission Editor(s): Wilkinson, Christopher Foster. Insectic Biochem Physiol pp 327–352 nPublisher: Plenum, New York, NY CODEN: 34LXAP; English

    Google Scholar 

  • Nathanson JA, Hunnicutt EJ, Kantham L, Scavon C (1993) Cocaine as a naturally occurring insecticide. Proc National Acad Sci USA 90:9645–9648

    Article  CAS  Google Scholar 

  • National Research Council (1992) Neem. A tree for solving global problems. National Academy Press, Washington, DC, p 141

  • National Research Council (2000) The future role of pesticides in US Agriculture. National Academy Press, Washington, DC, p 301

  • Naumann K, Isman MB (1996) Toxicity of neem (Azadirachta indica A. uss) seed extracts to larval honeybees and estimation of dangers from field applications. Am Bee J 136:518–520

    Google Scholar 

  • Ngoh SP, Hoo L, Pang FY, Huang Y, Kini MR, Ho SH (1998) Insecticidal and repellent properties of nine volatile constituents of essential oils against the American cockroach. Periplaneta Americana (L.). Pestic Sci 54:261–268

    Article  CAS  Google Scholar 

  • Okuna Y, Sen T, Ito S, Kaneko H, Watanabe T et al (1986) Differential metabolism of fenvalerate and granuloma fonnation. II. Toxicological significance of a lipophilic conjugate from fenvalerate. Toxicol Appl Pharmacol 83:157–169

    Article  Google Scholar 

  • Pavela R, Vrchotová N, Šerá B (2008) Growth inhibitory effect of extracts from Reynoutria sp. plants against Spodoptera littoralis larvae. Agrociencia 42:573–584

    Google Scholar 

  • Perry AS, Yamamoto I, Ishaaya I, Perry RY (1998) Insecticides in Agriculture and Environment: Retrospects and Prospects. Springer-Verlag, Berlin, p 261

    Book  Google Scholar 

  • Pesticide Action Network (2004) Pesticide registration by country. http://www. pesticideinfo.org/SearchCountries.jsp (Accessed: 15 April 2013)

  • Peterson C, Coats J (2001) Insect repellents past, present and future. Pestic Outlook 12:154–158

    Article  Google Scholar 

  • Philogène BJR, Arnason JT, Towers GHN, Abramowski Z, Campos F, Champagne D, McLachlan D (1984) Berberine: a naturally occurring phototoxic alkaloid. J Chem Ecol 10:115–123

    Article  PubMed  Google Scholar 

  • Philogène BJR, Regnault-Roger C, Vincent C (2005) Botanicals: yesteday’s and today’s promises. In: Regnault-Roger C, Philogène BJR, Vincent C (eds) Biopesticides of plant origin. Lavoisier and Andover, UK, pp 1–15

  • Pittarelli GW, Buta JG, Neal JW Jr, Lusby WR, Waters RM (1993) Biological pesticide derived from Nicotiana Plants. U.S. Patent No. 5,260,281

  • Prakash A, Rao J (1997) Botanical pesticides in agriculture. CRC Press, Boca Raton, p 461

    Google Scholar 

  • Priestley CM, Williamson EM, Wafford KA, Sattelle DB (2003) Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABAA receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Br J Pharmacol 140:1363–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quarles W (1996) EPA exempts least-toxic pesticides. IPM Pract 18:16–17

    Google Scholar 

  • Ratra GS, Casida JE (2001) GABA receptor subunit composition relative to insecticide potency and selectivity. Toxicol Letters 122:215–222

    Article  CAS  Google Scholar 

  • Rattan RS (2010) Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot 29:913–920

    Article  CAS  Google Scholar 

  • Regnault-Roger C, Philogène BJR (2008) Past and current prospects for the use of botanicals and plant allelochemicals in integrated pest management. Pharmac Biol 46:41–52

    Article  CAS  Google Scholar 

  • Regnault-Roger C, Hamraoui A, Holeman M, Théron E, Pinel R (1993) Insecticidal effect of essential oils from mediterranean plants upon A. obtectus Say (Coleoptera, Bruchidae), a pest of kidney bean (Phaseolus vulgaris L.). J Chem Ecol 19:1231–1242

    Article  Google Scholar 

  • Regnault-Roger C, Philogène BJR, Vincent C (eds) (2005) Biopesticides of plant origin. Lavoisier, Paris, p 313

  • Rembold H, Mwangi R (2002) Melia volkensii Gürke. Neem Found, Mumbai, pp 827–32

  • Rice PJ, Coats JR (1994) Insecticidal properties of monoterpenoid derivatives to the house fly (Muscidae) and red flour beetle (Tenebrionidae). Pestic Sci 41:195–202

    Article  CAS  Google Scholar 

  • Richards AG, Cutkomp LA (1945) Cholinesterase of insect nerves. J Cell Comp Physiol 26:57–61

    Article  CAS  Google Scholar 

  • Ryan MF, Byrne O (1988) Plant-insect coevolution and inhibition of acetylcholineesterase. J Chem Ecol 14:1965–1975

    Article  CAS  PubMed  Google Scholar 

  • Salama HS, Sharaby AM (1988) Feeding deterrence induced by some plants in Spodoptera littoralis and their potentiating effect on Bacillus thuringiensis Berliner. Internat J Tropical Insect Sci 9: 573–577

    Article  Google Scholar 

  • Salama HS, Wassel G, Saleh R (1970) Resistance of some varieties of Mangifera indica (L.) to scale insects infestation due to flavonoids. Curr Sci 39:497

    Google Scholar 

  • Sallam AA, Volkmar C, El-Wakeil NE (2009) Effectiveness of different bio–rational insecticides applied on wheat plants to control cereal aphids. J Plant Dis & Prot 116:283–287

    Article  CAS  Google Scholar 

  • Sallena RC (1989) Insecticides from neem. In: Amason IT, Phllogene BJR, Morand P (eds) Insecticides of plant origin. American Chemical Society, Washington, DC, p 213

  • Sammour EA, El-Hawary FM, Abdel-Aziz NF (2011) Comparative study on the efficacy of neemix and basil oil formulations on the cowpea aphid Aphis craccivora Koch. Arch Phytopathol & Plant Prot 44:655–670

    Article  CAS  Google Scholar 

  • Schmutterer H (1990) Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annu Rev Entomol 35:271–297

    Article  CAS  PubMed  Google Scholar 

  • Schmutterer H (ed) (2002) The neem tree. Neem Found, Mumbai, p 892

  • Sharaby AM (1988) Anti-insect properties of the essential oil of lemon grass, Cymbopogen citratus against Spodoptera exigua (Hbn). Internat J Trop Insect Sci 9:77–80

    Article  Google Scholar 

  • Shepard H (1951) The chemistry and action of insecticides. McGraw-Hill, New York, p 504

    Google Scholar 

  • Spollen KM, Isman MB (1996) Acute and sublethal effects of a neem insecticide on the commercial biocontrol agents Phytoseiulus persimilis and Amblyseius cucumeris and Aphidoletes aphidimyza. J Econ Entomol 89:1379–1386

    Article  CAS  Google Scholar 

  • Stroh J, Wan MT, Isman MB, Moul DJ (1998) Evaluation of the acute toxicity to juvenile Pacific coho salmon and rainbow trout of some plant essential oils, a formulated product, and the carrier. Bull Environ Contam Toxicol 60:923–930

    Article  CAS  PubMed  Google Scholar 

  • Tamayo MC, Rufat M, Bravo JM, San Segundo B (2000) Accumulation of a maize proteinase inhibitor in response to wounding and insect feeding and characterization of its activity toward digestive proteinases of Spodoptera littoralis larvae. Planta 211:62–71

    Article  CAS  PubMed  Google Scholar 

  • Tang JD, Gilboa S, Roush RT, Shelton AM (1997) Inheritance, stability and lack-of-fitness costs of field-selected resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae) from Florida. J Econ Entomol 90:732–741

    Article  Google Scholar 

  • Thacker JMR (2002) An introduction to arthropod pest control. Cambridge University Press, Cambridge, p 343

  • Thibout E, Auger J (1997) Composés soufrés des Allium et lutte contre les insectes. Acta Bot Gallica 144:419–426

    Article  Google Scholar 

  • Thibout E, Lecomte C, Auger J (1986) Substances soufrées des Allium et insectes. Acta Bot Gallica 143:137–142

    Article  Google Scholar 

  • Trumble JT (2002) Caveat emptor: safety considerations for natural products used in arthropod control. Am Entomol 48:7–13

    Article  Google Scholar 

  • Wan MT, Watts RG, Isman MB, Strub R (1996) An evaluation of the acute toxicity to juvenile Pacific northwest salmon of azadirachtin, neem extract and neem-based products. Bull Environ Contam Toxicol 56:432–439

    Article  CAS  PubMed  Google Scholar 

  • Ware GW (1983) Pesticides. Theory and application. Freeman, San Francisco, p 308

    Google Scholar 

  • Ware GW (1988) The pesticide book. Thomson Publication, USA

  • Weinzierl RA (2000) Botanical insecticides, soaps, and oils. In: Rechcigl JE, Rechcigl NA (eds) Biological and biotechnological control of insect pests. Lewis Publishers, Boca Raton, pp 101–121

  • Whittaker RH, Feeny P (1971) Allelochemicals: chemical interactions between species. Science 171:757–770

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto C, Kurokawa M (1970) Synaptic potentials recorded in brain slices and their modification by changes in the level of tissue ATP. Exp Brain Res 10:159–170

    Article  CAS  PubMed  Google Scholar 

  • Zhao JZ, Li YX, Collins HL, Gusukuma-Minuto L, Mau RFL et al (2002) Monitoring and characterization of diamondback moth resistance to spinosad. J Econ Ent 95:430–436

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to Prof. Ahmed Sallam forreviewing this manuscript in the early stage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil E. El-Wakeil.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10343-018-0415-2.

This article (1) has been retracted by the Editor in Chief due to significant overlap with a previously published article (2). The author does not agree to this retraction.

1. “Botanical Pesticides and Their Mode of Action” by Nabil E. El-Wakeil, Gesunde Pflanzen (2013) 65:125–149, DOI https://doi.org/10.1007/s10343-013-0308-3

2. BOTANICAL INSECTICIDES, DETERRENTS, AND REPELLENTS INMODERN AGRICULTURE AND AN INCREASINGLY REGULATEDWORLD by Murray B. Isman, Annu. Rev. Entomol. 2006. 51:45–66, https://doi.org/10.1146/annurev.ento.51.110104.151146

About this article

Cite this article

El-Wakeil, N. RETRACTED ARTICLE: Botanical Pesticides and Their Mode of Action. Gesunde Pflanzen 65, 125–149 (2013). https://doi.org/10.1007/s10343-013-0308-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-013-0308-3

Keywords

Schlusswörter

Navigation