Preparation of Novel Zwitterionic Monolith for Capillary Electrochromatography and Nano LC–MS Applications

  • Feng LiEmail author
  • Danye Qiu
  • Jingjing He
  • Jingwu Kang
Short Communication


Herein, a zwitterionic organic polymer monolithic stationary phase was prepared based on the in situ thermal-initiated copolymerizing 3-dimethyl-(3-(N-methacrylamido) propyl) ammonium propane sulfonate (DMMPPS) and pentaerythritol triacrylate (PETA) in a binary porogenic solvent consisting of MeOH and H2O. An HILIC/RP dual separation mechanism was observed on this optimised poly(DMMPPS-co-PETA) monolithic column and the composition of the mobile phase corresponding to the transition from the HILIC to the RP mode was around 30% ACN in water. The proposed monolithic column was successfully applied to separate 12 polar neurotransmitters in a nano LC–MS mode. About ~ 27 μm plate height (corresponding to column efficiency of ~ 93,000 plates/m) was obtained at the linear velocity of 1 mm/s. Meantime, the DMMPPS-based monolith exhibited good mechanical stability and excellent separation performance for nucleic acid bases, nucleosides and nucleotides for capillary electrochromatography (CEC). Relative standard deviations (RSD%) of the retention times for five nucleic acid bases and nucleosides were in the range of 0.15–0.42% (run-to-run, n = 3) and 2.63–4.50% (column-to-column, n = 3), respectively. Our work demonstrated that the zwitterionic monolith columns could be an effective separation tool for analysis of hydrophilic substances both on the HI-CEC and nano LC–MS mode.


Hydrophilic interaction chromatography Capillary electrochromatography Neurotransmitters Zwitterionic monolithic column 



This research project was financed by the Xi’an Science and Technology Plan Project (2019KJWL02), the Natural Science Foundation of Shaanxi Province (2018JQ2024), the Special Scientific Research Project of Shaanxi Provincial Education Department (17JK1127) and Shaanxi college students’ innovation and entrepreneurship training project (S201911080054).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10337_2019_3823_MOESM1_ESM.docx (309 kb)
Supplementary material 1 (DOCX 308 kb)


  1. 1.
    Jonnada M, Rathnasekara R, Rassi ZE (2015) Electrophoresis 36:76CrossRefGoogle Scholar
  2. 2.
    Xiong X, Liu YM (2016) Talanta 150:493CrossRefGoogle Scholar
  3. 3.
    Alpert AJ (2011) J Chromatogr A 1218:5879CrossRefGoogle Scholar
  4. 4.
    Armstrong DW, Jin HL (1989) J Chromatogr A 462:219CrossRefGoogle Scholar
  5. 5.
    McCalley DV (2017) J Chromatogr A 1523:49CrossRefGoogle Scholar
  6. 6.
    Buszewski B, Noga S (2012) Anal Bioanal Chem 402:231CrossRefGoogle Scholar
  7. 7.
    Tang DQ, Zou L, Yin XX, Ong CN (2016) Mass Spectrom Rev 35:574CrossRefGoogle Scholar
  8. 8.
    Jian WY, Edom RW, Xu YD, Weng ND (2010) J Sep Sci 33:681CrossRefGoogle Scholar
  9. 9.
    Guo Y, Gaiki S (2011) J Chromatogr A 1218:5920CrossRefGoogle Scholar
  10. 10.
    Hsiao JJ, Kennedy AP, Van de Bittner GC, Wei T (2018) LC GC 36:30Google Scholar
  11. 11.
    Palumbo D, Fais P, Cali A, Lusardi M, Bertol E, Pascali JP (2018) J Chromatogr A 1100:33Google Scholar
  12. 12.
    Jiang ZJ, Smith NW, Liu ZH (2011) J Chromatogr A 1218:2350CrossRefGoogle Scholar
  13. 13.
    Jonnada M, Rathnasekara R, Rassi ZE (2015) Electrophoresis 36:76CrossRefGoogle Scholar
  14. 14.
    Guerrouache M, Pantazake A, Millot M, Carbonnier B (2010) J Sep Sci 33:787CrossRefGoogle Scholar
  15. 15.
    Wang X, Ding K, Yang C, Lin X, Lü H, Wu X, Xie Z (2010) Electrophoresis 31:2997CrossRefGoogle Scholar
  16. 16.
    Tijunelyte I, Babinot J, Guerrouache M, Valincius G, Carbonnier B (2012) Polymer 53:29CrossRefGoogle Scholar
  17. 17.
    Lin H, Ou J, Zhang Z, Dong J, Wu M, Zou H (2012) Anal Chem 84:2721CrossRefGoogle Scholar
  18. 18.
    Chen ECY, Wang K, Liu Y, Yang H, Yao S, Chen B, Nie L, Xu G (1877) Electrophoresis 2013:34Google Scholar
  19. 19.
    Liu CS, Li HB, Wang QQ, Crommen J, Zhou HB, Jiang ZJ (2017) J Chromatogr A 1509:83CrossRefGoogle Scholar
  20. 20.
    Qiu DY, Li F, Zhang MY, Kang JW (2016) Electrophoresis 37:1725CrossRefGoogle Scholar
  21. 21.
    Li F, Qiu DY, Kang JW (2017) Chromatographia 80:975CrossRefGoogle Scholar
  22. 22.
    Marc D, Ailts JW, Campeau DCA, Bull MJ, Olsen KL (2011) Neurosci Biobehav Rev 35:635CrossRefGoogle Scholar
  23. 23.
    Liu L, Li Q, Li N, Ling J, Liu R, Wang Y, Sun L, Chen XH, Bi K (2011) J Sep Sci 34:1198CrossRefGoogle Scholar
  24. 24.
    Chirita RI, West C, Finaru AL, Elfakir C (2010) J Chromatogr A 1217:3091CrossRefGoogle Scholar
  25. 25.
    Konieczna L, Roszkowska A, Synakiewicz A, Stachowicz-Stencel T, Adamkiewicz-Drozynska E, Baczek T (2016) Talanta 150:331CrossRefGoogle Scholar
  26. 26.
    Petro PM, Svec F, Frechet JM (1998) Anal Chem 70:2288CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical EngineeringXi’an UniversityXi’anChina
  2. 2.State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina

Personalised recommendations