Biomechanics and Modeling in Mechanobiology

, Volume 12, Issue 3, pp 511–531 | Cite as

Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches

Original Paper


Blast waves generated by improvised explosive devices can cause mild, moderate to severe traumatic brain injury in soldiers and civilians. To understand the interactions of blast waves on the head and brain and to identify the mechanisms of injury, compression-driven air shock tubes are extensively used in laboratory settings to simulate the field conditions. The overall goal of this effort is to understand the mechanics of blast wave–head interactions as the blast wave traverses the head/brain continuum. Toward this goal, surrogate head model is subjected to well-controlled blast wave profile in the shock tube environment, and the results are analyzed using combined experimental and numerical approaches. The validated numerical models are then used to investigate the spatiotemporal distribution of stresses and pressure in the human skull and brain. By detailing the results from a series of careful experiments and numerical simulations, this paper demonstrates that: (1) Geometry of the head governs the flow dynamics around the head which in turn determines the net mechanical load on the head. (2) Biomechanical loading of the brain is governed by direct wave transmission, structural deformations, and wave reflections from tissue–material interfaces. (3) Deformation and stress analysis of the skull and brain show that skull flexure and tissue cavitation are possible mechanisms of blast-induced traumatic brain injury.


Blast TBI Head Mechanics Experiments Numerical models FSI 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10237_2012_421_MOESM1_ESM.docx (586 kb)
DOCX 1 (DOCX 587 kb)


  1. Anderson J (2001) Fundamentals of aerodynamics. McGraw-Hill, New YorkGoogle Scholar
  2. Baker TJ (2005) Mesh generation: art or science. Prog Aerosp Sci 41(1): 29–63. doi: 10.1016/j.paerosci.2005.02.002 CrossRefGoogle Scholar
  3. Bauman RA, Ling G, Tong L, Januszkiewicz A, Agoston D, Delanerolle N, Kim Y, Ritzel D, Bell R, Ecklund J, Armonda R, Bandak F, Parks S (2009) An introductory characterization of a combat-casualty-care relevant swine model of closed head injury resulting from exposure to explosive blast. J Neurotrauma 26(6): 841–860. doi: 10.1089/neu.2008.0898 CrossRefGoogle Scholar
  4. Belingardi G, Chiandussi G, Gaviglio I (2005) Development and validation of a new finite element model of human head. In: 19th International technical conference on the enhanced safety of vehicles, Washington, DCGoogle Scholar
  5. Bhattacharjee Y (2008) Neuroscience—shell shock revisited: solving the puzzle of blast trauma. Science 319(5862): 406–408. doi: 10.1126/science.319.5862.406 CrossRefGoogle Scholar
  6. Bolander R, Mathie B, Bir C, Ritzel D, Vandevord P (2011) Skull flexure as a contributing factor in the mechanism of injury in the rat when exposed to a shock wave. Ann Biomed Eng 39(10): 2550–2559. doi: 10.1007/s10439-011-0343-0 CrossRefGoogle Scholar
  7. Bourdin X, Beillas P, Petit P, Troseille X (2007) Comparison of tetrahedral and hexahedral meshes for human finite element modelling: an application to kidney impact. In: 20th Enhanced safety of vehicles conference: innovations for safety: opportunities and challengesGoogle Scholar
  8. Cernak I (2005a) Animal models of head trauma. NeuroRX 2(3): 410–422. doi: 10.1602/neurorx.2.3.410 CrossRefGoogle Scholar
  9. Cernak I (2005b) Penetrating and blast injury. Restor Neurol Neurosci 23(3): 139–143Google Scholar
  10. Cernak I, Wang ZG, Jiang JX, Bian XW, Savic J (2001) Ultrastructural and functional characteristics of blast injury-induced neurotrauma. J Trauma-Injury Infect Crit Care 50(4): 695–706. doi: 10.1097/00005373-200104000-00017 CrossRefGoogle Scholar
  11. Chafi M, Karami G, Ziejewski M (2010) Biomechanical assessment of brain dynamic responses due to blast pressure waves. Ann Biomed Eng 38(2): 490–504. doi: 10.1007/s10439-009-9813-z CrossRefGoogle Scholar
  12. Chandra N, Holmberg A, Feng R (2011) Controlling the shape of the shock wave profile in a blast facility, U.S. Provisional patent application no. 61542354Google Scholar
  13. Chatelin S, Constantinesco A, Willinger R (2010) Fifty years of brain tissue mechanical testing: from in vitro to in vivo investigations. Biorheology 47(5–6): 255–276. doi: 10.3233/bir-2010-0576 Google Scholar
  14. Chavko M, Koller WA, Prusaczyk WK, McCarron RM (2007) Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain. J Neurosci Methods 159(2): 277–281. doi: 10.1016/j.jneumeth.2006.07.018 CrossRefGoogle Scholar
  15. Chavko M, Watanabe T, Adeeb S, Lankasky J, Ahlers ST, McCarron RM (2010) Relationship between orientation to a blast and pressure wave propagation inside the rat brain. J Neurosci Methods 195(1): 61–66. doi: 10.1016/j.jneumeth.2010.11.019 CrossRefGoogle Scholar
  16. Chen Y, Ostoja-Starzewski M (2010) MRI-based finite element modeling of head trauma: spherically focusing shear waves. Acta Mech 213(1–2): 155–167. doi: 10.1007/s00707-009-0274-0 MATHCrossRefGoogle Scholar
  17. Cifuentes AO, Kalbag A (1992) A performance study of tetrahedral and hexahedral elements in 3-D finite element structural analysis. Finite Elem Anal Des 12(3–4): 313–318. doi: 10.1016/0168-874x(92)90040-j CrossRefGoogle Scholar
  18. Claessens M, Sauren F, Wismans J (1997) Modeling of the human head under impact conditions: a parametric study. In: Proceedings of 41st stapp car crash conference, pp 315–328Google Scholar
  19. Courtney AC, Courtney MW (2009) A thoracic mechanism of mild traumatic brain injury due to blast pressure waves. Med Hypotheses 72(1): 76–83. doi: 10.1016/j.mehy.2008.08.015 MathSciNetCrossRefGoogle Scholar
  20. DePalma RG, Burris DG, Champion HR, Hodgson MJ (2005) Blast injuries. N Engl J Med 352(13): 1335–1342. doi: 10.1056/NEJMra042083 CrossRefGoogle Scholar
  21. Desmoulin GT, Dionne JP (2009) Blast-induced neurotrauma: surrogate use, loading mechanisms, and cellular responses. J Trauma-Injury Infect Crit Care 67(5): 1113–1122. doi: 10.1097/TA.0b013e3181bb8e84 CrossRefGoogle Scholar
  22. Dogan A, Rao AM, Baskaya MK, Hatcher J, Temiz C, Rao VLR, Dempsey RJ (1999) Contribution of polyamine oxidase to brain injury after trauma. J Neurosurg 90(6): 1078–1082. doi: 10.3171/jns.1999.90.6.1078 CrossRefGoogle Scholar
  23. El Sayed T, Mota A, Fraternali F, Ortiz M (2008) Biomechanics of traumatic brain injury. Comput Methods Appl Mech Eng 197(51–52): 4692–4701. doi: 10.1016/j.cma.2008.06.006 MATHCrossRefGoogle Scholar
  24. Elder GA, Cristian A (2009) Blast-related mild traumatic brain injury: mechanisms of injury and impact on clinical care. Mount Sinai J Med 76(2): 111–118. doi: 10.1002/msj.20098 CrossRefGoogle Scholar
  25. Ganpule S, Gu L, Alai A, Chandra N (2011) Role of helmet in the mechanics of shock wave propagation under blast loading conditions. Comput Methods Biomech Biomed Eng 1–12. doi: 10.1080/10255842.2011.597353
  26. Grujicic M, Bell W, Pandurangan B, Glomski P (2011) Fluid/structure interaction computational investigation of blast-wave mitigation efficacy of the advanced combat helmet. J Mater Eng Perform 20(6): 877–893. doi: 10.1007/s11665-010-9724-z CrossRefGoogle Scholar
  27. Honma H, Ishihara M, Yoshimura T, Maeno K, Morioka T (2003) Interferometric CT measurement of three-dimensional flow phenomena on shock waves and vortices discharged from open ends. Shock Waves 13(3): 179–190. doi: 10.1007/s00493-003-0206-1 CrossRefGoogle Scholar
  28. Horgan TJ, Gilchrist MD (2003) The creation of three-dimensional finite element models for simulating head impact biomechanics. Int J Crashworthiness 8(4): 353–366. doi: 10.1533/ijcr.2003.0243 CrossRefGoogle Scholar
  29. Jiang Z, Wang C, Miura Y, Takayama K (2003) Three-dimensional propagation of the transmitted shock wave in a square cross-sectional chamber. Shock Waves 13(2): 103–111. doi: 10.1007/s00193-003-0197-y MATHCrossRefGoogle Scholar
  30. Kashimura H, Yasunobu T, Nakayama H, Setoguchi T, Matsuo K (2000) Discharge of a shock wave from an open end of a tube. J Thermal Sci 9(1): 30–36. doi: 10.1007/s11630-000-0042-x CrossRefGoogle Scholar
  31. Kennedy EA (2007) The development and validation of a biofidelic synthetic eye for the facial and ocular countermeasure safety (FOCUS) headform. PhD dissertation, Virginia Polytechnic Institute and State University, BlacksburgGoogle Scholar
  32. Khalil TB, Viano DC (1982) Critical issues in finite element modeling of head impact. In: Proceedings of 26th stapp car crash conference, SAE Paper No 821150Google Scholar
  33. Kleinschmit NN (2011) A shock tube technique for blast wave simulation and studies of flow structure interactions in shock tube blast experiments. Master’s thesis, University of Nebraska–Lincoln, LincolnGoogle Scholar
  34. Kleiven S, von Holst H (2002) Consequences of head size following trauma to the human head. J Biomech 35(2): 153–160. doi: 10.1016/s0021-9290(01)00202-0 CrossRefGoogle Scholar
  35. Krave U, Höjer S, Hansson H-A (2005) Transient, powerful pressures are generated in the brain by a rotational acceleration impulse to the head. Eur J Neurosci 21(10): 2876–2882. doi: 10.1111/j.1460-9568.2005.04115.x CrossRefGoogle Scholar
  36. Leonardi AD, Bir CA, Ritzel DV, VandeVord PJ (2011) Intracranial pressure increases during exposure to a shock wave. J Neurotrauma 28(1): 85–94. doi: 10.1089/neu.2010.1324 CrossRefGoogle Scholar
  37. Ling G, Bandak F, Armonda R, Grant G, Ecklund J (2009) Explosive blast neurotrauma. J Neurotrauma 26(6): 815–825. doi: 10.1089/neu.2007.0484 CrossRefGoogle Scholar
  38. Lubock P, Goldsmith W (1980) Experimental cavitation studies in a model head–neck system. J Biomech 13(12): 1041–1052. doi: 10.1016/0021-9290(80)90048-2 CrossRefGoogle Scholar
  39. Marklund N, Clausen F, Lewen A, Hovda DA, Olsson Y, Hillered L (2001) Alpha-Phenyl-tert-N-butyl nitrone (PBN) improves functional and morphological outcome after cortical contusion injury in the rat. Acta Neurochirurgica 143(1): 73–81. doi: 10.1007/s007010170141 CrossRefGoogle Scholar
  40. McElhaney J, Melvin JW, Roberts VL, Portnoy HD (1973) Dynamic characteristics of the tissues of the head. In: Kenedi RM (ed) Perspectives in biomedical engineering. Macmillian Press Ltd, London, pp 215–222Google Scholar
  41. Moore DF, Radovitzky RA, Shupenko L, Klinoff A, Jaffee MS, Rosen JM (2008) Blast physics and central nervous system injury. Future Neurol 3(3): 243–250. doi: 10.2217/14796708.3.3.243 CrossRefGoogle Scholar
  42. Moore DF, Jerusalem A, Nyein M, Noels L, Jaffee MS, Radovitzky RA (2009) Computational biology—modeling of primary blast effects on the central nervous system. Neuroimage 47: T10–T20. doi: 10.1016/j.neuroimage.2009.02.019 CrossRefGoogle Scholar
  43. Moss WC, King MJ, Blackman EG (2009) Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design. Phys Rev Lett 103: 10–108702. doi: 10.1103/PhysRevLett.103.108702 CrossRefGoogle Scholar
  44. Mott DR SD, Young TR, Levine J, Dionne JP, Makris A, Hubler G (Sept 1st–5th 2008) Blast-induced pressure fields beneath a military helmet. In: 20th international symposium on military aspects of blast and shock, OsloGoogle Scholar
  45. Nahum A, Smith R, Ward C (1977) Intracranial pressure dynamics during head impact. In: Proceedings of 21st stapp car crash conference, pp 339–366Google Scholar
  46. Nakagawa A, Fujimura M, Kato K, Okuyama H, Hashimoto T, Takayama K, Tominaga T (2009) Shock wave-induced brain injury in rat: novel traumatic brain injury animal model Acta Neurochirurgica Supplements. In: Steiger HJ (ed) Acta neurochirurgica supplementum, vol 102. Springer, Vienna, pp 421–424. doi: 10.1007/978-3-211-85578-2_82
  47. National Institutes of Health (2009) The Visible Human Project, National Library of Medicine,
  48. Nicolle S, Lounis M, Willinger R, Palierne JF (2005) Shear linear behavior of brain tissue over a large frequency range. Biorheology 42(3): 209–223Google Scholar
  49. Nusholtz GS, Kaiker PS, Gould WS (1987) Two factors critical in the pressure response of the impacted head. Aviat Space Environ Med 58(12): 1157–1164Google Scholar
  50. Nyein MK, Jason AM, Yu L, Pita CM, Joannopoulos JD, Moore DF, Radovitzky RA (2010) In silico investigation of intracranial blast mitigation with relevance to military traumatic brain injury. Proc Natl Acad Sci. doi: 10.1073/pnas.1014786107
  51. Pervin F, Chen WW (2009) Dynamic mechanical response of bovine gray matter and white matter brain tissues under compression. J Biomech 42(6): 731–735. doi: 10.1016/j.jbiomech.2009.01.023 CrossRefGoogle Scholar
  52. Prevost TP, Balakrishnan A, Suresh S, Socrate S (2011) Biomechanics of brain tissue. Acta Biomaterialia 7(1): 83–95. doi: 10.1016/j.actbio.2010.06.035 CrossRefGoogle Scholar
  53. Ramos A, Simões JA (2006) Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur. Med Eng Phys 28(9): 916–924. doi: 10.1016/j.medengphy.2005.12.006 CrossRefGoogle Scholar
  54. Ruan JS, Khalil T, King AI (1994) Dynamic response of the human head to impact by three-dimensional finite element analysis. J Biomech Eng Trans ASME 116(1): 44–50CrossRefGoogle Scholar
  55. Schneiders R (2000) Algorithms for quadrilateral and hexahedral mesh generation. In: Proceedings of the VKI lecture series on computational fluid cynamicsGoogle Scholar
  56. Stalnaker RL (1969) Mechanical properties of the head, Ph.D. Dissertation. West Virginia UniversityGoogle Scholar
  57. Sundaramurthy A, Alai A, Ganpule S, Holmberg A, Plougonven E, Chandra N (2012) Blast-induced biomechanical loading of the rat: experimental and anatomically accurate computational blast injury model. J Neurotrauma [ahead of print. doi: 10.1089/neu.2012.2413 ]
  58. Takhounts EG, Eppinger RH, Campbell JQ, Tannous RE, Power ED, Shook LS (2003) On the development of the SIMon finite element head model. Stapp Car Crash J 47: 107–133Google Scholar
  59. Takhounts EG, Ridella SA, Hasija V, Tannous RE, Campbell JQ, Malone D, Danelson K, Stitzel J, Rowson S, Duma S (2008) Investigation of traumatic brain injuries using the next generation of simulated injury monitor (SIMon) finite element head model. Stapp Car Crash J 52: 1–31Google Scholar
  60. Tanielian T, Jaycox LH (2008) Invisible wounds of war. RAND Corp, Santa MonicaGoogle Scholar
  61. Taylor PA, Ford CC (2009) Simulation of blast-induced early-time intracranial wave physics leading to traumatic brain injury. J Biomech Eng Trans ASME 131(6): 061007. doi: 10.1115/1.3118765 CrossRefGoogle Scholar
  62. Teasdale G, Jennett B (1974) Assessment of coma and impaired consciousness: a practical scale. Lancet 304(7872): 81–84. doi: 10.1016/s0140-6736(74)91639-0 CrossRefGoogle Scholar
  63. Trosseille X, Tarriére C, Lavaste F, Guillon F, Domont A (1992) Development of a F.E.M. of the human head according to a specific test protocol. SAE Technical Paper 922527. In: Stapp car crash conference. doi: 10.4271/922527
  64. Wang Y, Wei YL, Oguntayo S, Wilkins W, Arun P, Valiyaveettil M, Song J, Long JB, Nambiar MP (2011) Tightly coupled repetitive blast-induced traumatic brain injury: development and characterization in mice. J Neurotrauma 28(10): 2171–2183. doi: 10.1089/neu.2011.1990 CrossRefGoogle Scholar
  65. Ward CC, Chan M, Nahum AM (1980) Intracranial pressure—a brain injury criterion. In: Proceedings of 24th stapp car crash conference SAE No. 801304, p 161Google Scholar
  66. Wieding J, Souffrant R, Fritsche A, Mittelmeier W, Bader R (2012) Finite element analysis of osteosynthesis screw fixation in the bone stock: an appropriate method for automatic screw modelling. PLoS One 7(3): e33776. doi: 10.1371/journal.pone.0033776 CrossRefGoogle Scholar
  67. Willinger R, Kang HS, Diaw B (1999) Three-dimensional human head finite-element model validation against two experimental impacts. Ann Biomed Eng 27(3): 403–410. doi: 10.1114/1.165 CrossRefGoogle Scholar
  68. Zhang L, Yang KH, Dwarampudi R, Omori K, Li T, Chang K, Hardy WN, Khalil TB, King AI (2001a) Recent advances in brain injury research: a new human head model development and validation. Stapp Car Crash J 45: 369–394Google Scholar
  69. Zhang LY, Yang KH, King AI (2001b) Comparison of brain responses between frontal and lateral impacts by finite element modeling. J Neurotrauma 18(1): 21–30. doi: 10.1089/089771501750055749 MATHCrossRefGoogle Scholar
  70. Zhang LY, Yang KH, King AI (2004) A proposed injury threshold for introduction mild traumatic brain injury. J Biomech Eng Trans ASME 126(2): 226–236. doi: 10.1115/1.1691446 CrossRefGoogle Scholar
  71. Zhu F, Mao H, DalCengio Leonardi A, Wagner C, Chou C, Jin X, Bir C, VandeVord P, Yang KH, King AI (2010) Development of an FE Model of the rat head subjected to air shock loading. Stapp Car Crash J 54: 211–225Google Scholar
  72. Zhu F, Wagner C, DalCengio Leonardi A, Jin X, VandeVord P, Chou C, Yang K, King A (2012) Using a gel/plastic surrogate to study the biomechanical response of the head under air shock loading: a combined experimental and numerical investigation. Biomech Model Mechanobiol 11(3–4): 341–353. doi: 10.1007/s10237-011-0314-2 CrossRefGoogle Scholar
  73. Zoghi-Moghadam M, Sadegh AM (2009) Global/local head models to analyse cerebral blood vessel rupture leading to ASDH and SAH. Comput Methods Biomech Biomed Eng 12(1): 1–12. doi: 10.1080/10255840802020420 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • S. Ganpule
    • 1
  • A. Alai
    • 1
  • E. Plougonven
    • 1
  • N. Chandra
    • 1
  1. 1.Department of Mechanical and Materials EngineeringUniversity of Nebraska–LincolnLincolnUSA

Personalised recommendations