Advertisement

Neurosurgical Review

, Volume 30, Issue 4, pp 277–290 | Cite as

Hypertonic saline: a clinical review

  • R. Tyagi
  • K. Donaldson
  • C. M. Loftus
  • J. JalloEmail author
Review

Abstract

Literature suggest that hypertonic saline (HTS) solution with sodium chloride concentration greater than the physiologic 0.9% can be useful in controlling elevated intracranial pressure (ICP) and as a resuscitative agent in multiple settings including traumatic brain injury (TBI). In this review, we discuss HTS mechanisms of action, adverse effects, and current clinical studies. Studies show that HTS administered during the resuscitation of patients with a TBI improves neurological outcome. HTS also has positive effects on elevated ICP from multiple etiologies, and for shock resuscitation. However, a prospective randomized Australian study using an aggressive resuscitation protocol in trauma patients showed no difference in amount of fluids administered during prehospital resuscitation, and no differences in ICP control or neurological outcome. The role of HTS in prehospital resuscitation is yet to be determined. The most important factor in improving outcomes may be prevention of hypotension and preservation of cerebral blood flow. In regards to control of elevated ICP during the inpatient course, HTS appears safe and effective. Although clinicians currently use HTS with some success, significant questions remain as to the dose and manner of HTS infusion. Direct protocol comparisons should be performed to improve and standardize patient care.

Keywords

Hypertonic saline Fluid management Primary and secondary brain injury Traumatic brain injury 

Notes

References

  1. 1.
    Akdemir G et al (1997) Intraventricular atrial natriuretic peptide for acute intracranial hypertension. Neurol Res 19(5):515–520PubMedGoogle Scholar
  2. 2.
    Albers GW, Goldberg MP, Choi DW (1992) Do NMDA antagonists prevent neuronal injury? Yes. Arch Neurol 49(4):418–420PubMedGoogle Scholar
  3. 3.
    Alessandri B et al (1999) Evidence for time-dependent glutamate-mediated glycolysis in head-injured patients: a microdialysis study. Acta Neurochir Suppl 75:25–28PubMedGoogle Scholar
  4. 4.
    Angle N et al (2000) Hypertonic saline infusion: can it regulate human neutrophil function? Shock 14(5):503–508PubMedGoogle Scholar
  5. 5.
    Angle N et al (1998) Hypertonic saline resuscitation reduces neutrophil margination by suppressing neutrophil L selectin expression. J Trauma 45(1):7–12, discussion 12–13PubMedGoogle Scholar
  6. 6.
    Arbabi S et al (1999) Hypertonic saline induces prostacyclin production via extracellular signal-regulated kinase (ERK) activation. J Surg Res 83(2):141–146PubMedCrossRefGoogle Scholar
  7. 7.
    Ayus JC, Krothapalli RK, Arieff AI (1985) Changing concepts in treatment of severe symptomatic hyponatremia. Rapid correction and possible relation to central pontine myelinolysis. Am J Med 78(6 Pt 1):897–902PubMedCrossRefGoogle Scholar
  8. 8.
    Battistella FD, Wisner DH (1991) Combined hemorrhagic shock and head injury: effects of hypertonic saline (7.5%) resuscitation. J Trauma 31(2):182–188PubMedGoogle Scholar
  9. 9.
    Bauer M et al (1993) Comparative effects of crystalloid and small volume hypertonic hyperoncotic fluid resuscitation on hepatic microcirculation after hemorrhagic shock. Circ Shock 40(3):187–193PubMedGoogle Scholar
  10. 10.
    Berger S, Schwarz M, Huth R (2002) Hypertonic saline solution and decompressive craniectomy for treatment of intracranial hypertension in pediatric severe traumatic brain injury. J Trauma 53(3):558–563PubMedGoogle Scholar
  11. 11.
    Boldt J et al (1991) Influence of hypertonic volume replacement on the microcirculation in cardiac surgery. Br J Anaesth 67(5):595–602PubMedCrossRefGoogle Scholar
  12. 12.
    Bourgouin PM et al (1995) Subcortical white matter lesions in osmotic demyelination syndrome. AJNR Am J Neuroradiol 16(7):1495–1497PubMedGoogle Scholar
  13. 13.
    Bracken MB et al (1990) A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 322(20):1405–1411PubMedCrossRefGoogle Scholar
  14. 14.
    Bullock R et al (1996) Guidelines for the management of severe head injury. Brain Trauma Foundation. Eur J Emerg Med 3(2):109–127PubMedCrossRefGoogle Scholar
  15. 15.
    Chesnut RM (1997) Avoidance of hypotension: conditio sine qua non of successful severe head-injury management. J Trauma 42(5 Suppl):S4–S9PubMedGoogle Scholar
  16. 16.
    Chesnut RM et al (1993) The role of secondary brain injury in determining outcome from severe head injury. J Trauma 34(2):216–222PubMedGoogle Scholar
  17. 17.
    Choi DW (1988) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11(10):465–469PubMedCrossRefGoogle Scholar
  18. 18.
    Choi DW (1995) Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci 18(2):58–60PubMedCrossRefGoogle Scholar
  19. 19.
    Ciesla DJ et al (2001) Hypertonic saline activation of p38 MAPK primes the PMN respiratory burst. Shock 16(4):285–289PubMedGoogle Scholar
  20. 20.
    Ciesla DJ et al (2001) Hypertonic saline alteration of the PMN cytoskeleton: implications for signal transduction and the cytotoxic response. J Trauma 50(2):206–212PubMedGoogle Scholar
  21. 21.
    Ciesla DJ et al (2001) Hypertonic saline attenuation of the neutrophil cytotoxic response is reversed upon restoration of normotonicity and reestablished by repeated hypertonic challenge. Surgery 129(5):567–575PubMedCrossRefGoogle Scholar
  22. 22.
    Ciesla DJ et al (2000) Hypertonic saline inhibits neutrophil (PMN) priming via attenuation of p38 MAPK signaling. Shock 14(3):265–269, discussion 269–270PubMedGoogle Scholar
  23. 23.
    Clark BA et al (1991) Atrial natriuretic peptide suppresses osmostimulated vasopressin release in young and elderly humans. Am J Physiol 261(2 Pt 1):E252–E256PubMedGoogle Scholar
  24. 24.
    Coimbra R et al (1997) Hypertonic saline resuscitation decreases susceptibility to sepsis after hemorrhagic shock. J Trauma 42(4):602–606, discussion 606–607PubMedCrossRefGoogle Scholar
  25. 25.
    Cooper DJ et al (2004) Prehospital hypertonic saline resuscitation of patients with hypotension and severe traumatic brain injury: a randomized controlled trial. JAMA 291(11):1350–1357PubMedCrossRefGoogle Scholar
  26. 26.
    Cox AT, Ho HS, Gunther RA (1994) High level of arginine vasopressin and 7.5% NaCl/6% dextran-70 solution: cardiovascular and renal effects. Shock 1(5):372–376PubMedCrossRefGoogle Scholar
  27. 27.
    Dearden NM et al (1986) Effect of high-dose dexamethasone on outcome from severe head injury. J Neurosurg 64(1):81–88PubMedCrossRefGoogle Scholar
  28. 28.
    Dickman CA et al (1991) Continuous regional cerebral blood flow monitoring in acute craniocerebral trauma. Neurosurgery 28(3):467–472PubMedCrossRefGoogle Scholar
  29. 29.
    Doyle JA, Davis DP, Hoyt DB (2001) The use of hypertonic saline in the treatment of traumatic brain injury. J Trauma 50(2):367–383PubMedCrossRefGoogle Scholar
  30. 30.
    Dubick MA, Wade CE (1994) A review of the efficacy and safety of 7.5% NaCl/6% dextran 70 in experimental animals and in humans. J Trauma 36(3):323–330PubMedGoogle Scholar
  31. 31.
    Dubick MA et al (1993) Further evaluation of the effects of 7.5% sodium chloride/6% Dextran-70 (HSD) administration on coagulation and platelet aggregation in hemorrhaged and euvolemic swine. Circ Shock 40(3):200–205PubMedGoogle Scholar
  32. 32.
    Einhaus SL et al (1996) The use of hypertonic saline for the treatment of increased intracranial pressure. J Tenn Med Assoc 89(3):81–82PubMedGoogle Scholar
  33. 33.
    Fahrner SL et al (2002) Effect of medium tonicity and dextran on neutrophil function in vitro. J Trauma 52(2):285–292PubMedGoogle Scholar
  34. 34.
    Finberg L (1967) Dangers to infants caused by changes in osmolal concentration. Pediatrics 40(6):1031–1034PubMedGoogle Scholar
  35. 35.
    Finkelstein E, Corso P, Miller T and associates (2006) The incidence and economic burden of injuries in the United States. Oxford University Press, New YorkGoogle Scholar
  36. 36.
    Fisher B, Thomas D, Peterson B (1992) Hypertonic saline lowers raised intracranial pressure in children after head trauma. J Neurosurg Anesthesiol 4(1):4–10PubMedCrossRefGoogle Scholar
  37. 37.
    Fishman RA (1975) Brain edema. N Engl J Med 293(14):706–711PubMedCrossRefGoogle Scholar
  38. 38.
    Gemma M et al (1996) Hypertonic saline fluid therapy following brain stem trauma. J Neurosurg Anesthesiol 8(2):137–141PubMedCrossRefGoogle Scholar
  39. 39.
    Gomez CR, Backer RJ, Bucholz RD (1991) Transcranial Doppler ultrasound following closed head injury: vasospasm or vasoparalysis? Surg Neurol 35(1):30–35PubMedCrossRefGoogle Scholar
  40. 40.
    Gowrishankar M et al (1997) Profound natriuresis, extracellular fluid volume contraction, and hypernatremia with hypertonic losses following trauma. Geriatr Nephrol Urol 7(2):95–100PubMedCrossRefGoogle Scholar
  41. 41.
    Graham DI, Adams JH, Doyle D (1978) Ischaemic brain damage in fatal non-missile head injuries. J Neurol Sci 39(2–3):213–234PubMedCrossRefGoogle Scholar
  42. 42.
    Gross D et al (1988) Is hypertonic saline resuscitation safe in ‘uncontrolled’ hemorrhagic shock? J Trauma 28(6):751–756PubMedGoogle Scholar
  43. 43.
    Gross D et al (1989) Quantitative measurement of bleeding following hypertonic saline therapy in ‘uncontrolled’ hemorrhagic shock. J Trauma 29(1):79–83PubMedGoogle Scholar
  44. 44.
    Gruber KA (1987) The natriuretic response to hydromineral imbalance. Hypertension 10(5 Pt 2):I48–I51PubMedGoogle Scholar
  45. 45.
    Gunnar W et al (1988) Head injury and hemorrhagic shock: studies of the blood brain barrier and intracranial pressure after resuscitation with normal saline solution, 3% saline solution, and dextran-40. Surgery 103(4):398–407PubMedGoogle Scholar
  46. 46.
    Gunnar WP et al (1986) Resuscitation from hemorrhagic shock. Alterations of the intracranial pressure after normal saline, 3% saline and dextran-40. Ann Surg 204(6):686–692PubMedCrossRefGoogle Scholar
  47. 47.
    Hariri RJ et al (1989) Human glial cell production of lipoxygenase-generated eicosanoids: a potential role in the pathophysiology of vascular changes following traumatic brain injury. J Trauma 29(9):1203–1210PubMedGoogle Scholar
  48. 48.
    Hartl R et al (1997) Hypertonic/hyperoncotic saline reliably reduces ICP in severely head-injured patients with intracranial hypertension. Acta Neurochir Suppl 70:126–129PubMedGoogle Scholar
  49. 49.
    Hartl R et al (1997) Hypertonic/hyperoncotic saline attenuates microcirculatory disturbances after traumatic brain injury. J Trauma 42(5 Suppl):S41–S47PubMedGoogle Scholar
  50. 50.
    Hess JR et al (1992) The effects of 7.5% NaCl/6% dextran 70 on coagulation and platelet aggregation in humans. J Trauma 32(1):40–44PubMedGoogle Scholar
  51. 51.
    Hochwald GM et al (1974) The effects of serum osmolarity on cerebrospinal fluid volume flow. Life Sci 15(7):1309–1316PubMedCrossRefGoogle Scholar
  52. 52.
    Holcroft JW et al (1987) 3% NaCl and 7.5% NaCl/dextran 70 in the resuscitation of severely injured patients. Ann Surg 206(3):279–288PubMedCrossRefGoogle Scholar
  53. 53.
    Holcroft JW et al (1989) Use of a 7.5% NaCl/6% Dextran 70 solution in the resuscitation of injured patients in the emergency room. Prog Clin Biol Res 299:331–338PubMedGoogle Scholar
  54. 54.
    Huang PP et al (1995) Hypertonic sodium resuscitation is associated with renal failure and death. Ann Surg 221(5):543–554, discussion 554–557PubMedCrossRefGoogle Scholar
  55. 55.
    Johnson Jr EM, Deckwerth TL (1993) Molecular mechanisms of developmental neuronal death. Annu Rev Neurosci 16:31–46PubMedCrossRefGoogle Scholar
  56. 56.
    Johnson JL et al (1999) Extracellular signal-related kinase 1/2 and p38 mitogen- activated protein kinase pathways serve opposite roles in neutrophil cytotoxicity. Arch Surg 134(10):1074–1078PubMedCrossRefGoogle Scholar
  57. 57.
    Katzman R et al (1977) Report of Joint Committee for Stroke Resources. IV. Brain edema in stroke. Stroke 8(4):512–540PubMedGoogle Scholar
  58. 58.
    Kempski O, Behmanesh S (1997) Endothelial cell swelling and brain perfusion. J Trauma 42(5 Suppl):S38–S40PubMedGoogle Scholar
  59. 59.
    Khanna S et al (2000) Use of hypertonic saline in the treatment of severe refractory posttraumatic intracranial hypertension in pediatric traumatic brain injury. Crit Care Med 28(4):1144–1151PubMedCrossRefGoogle Scholar
  60. 60.
    Klatzo I (1967) Presidental address. Neuropathological aspects of brain edema. J Neuropathol Exp Neurol 26(1):1–14PubMedGoogle Scholar
  61. 61.
    Koura SS et al (1998) Relationship between excitatory amino acid release and outcome after severe human head injury. Acta Neurochir Suppl 71:244–246PubMedGoogle Scholar
  62. 62.
    Kraus GE et al (1991) Cerebrospinal fluid endothelin−1 and endothelin−3 levels in normal and neurosurgical patients: a clinical study and literature review. Surg Neurol 35(1):20–29PubMedCrossRefGoogle Scholar
  63. 63.
    Langlois JA, Rutland-Brown W, Thomas KE (2004) Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths. US Department of Health and Human Services, CDC, Atlanta, GAGoogle Scholar
  64. 64.
    Lee JH et al (1997) Hemodynamically significant cerebral vasospasm and outcome after head injury: a prospective study. J Neurosurg 87(2):221–233PubMedGoogle Scholar
  65. 65.
    Lee JM, Zipfel GJ, Choi DW (1999) The changing landscape of ischaemic brain injury mechanisms. Nature 399(6738 Suppl):A7–A14PubMedGoogle Scholar
  66. 66.
    Legos JJ et al (2001) SB 239063, a novel p38 inhibitor, attenuates early neuronal injury following ischemia. Brain Res 892(1):70–77PubMedCrossRefGoogle Scholar
  67. 67.
    Lewis RJ (2004) Prehospital care of the multiply injured patient: the challenge of figuring out what works. JAMA 291(11):1382–1384PubMedCrossRefGoogle Scholar
  68. 68.
    Lien YH, Shapiro JI, Chan L (1991)Study of brain electrolytes and organic osmolytes during correction of chronic hyponatremia. Implications for the pathogenesis of central pontine myelinolysis. J Clin Invest 88(1):303–309PubMedCrossRefGoogle Scholar
  69. 69.
    Liu, TH et al (1989) Polyethylene glycol-conjugated superoxide dismutase and catalase reduce ischemic brain injury. Am J Physiol 256(2 Pt 2):H589–H593PubMedGoogle Scholar
  70. 70.
    Marshall LF et al (1998) A multicenter trial on the efficacy of using tirilazad mesylate in cases of head injury. J Neurosurg 89(4):519–525PubMedCrossRefGoogle Scholar
  71. 71.
    Martin NA et al (1997) Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm. J Neurosurg 87(1):9–19PubMedGoogle Scholar
  72. 72.
    Mattox KL et al (1991) Prehospital hypertonic saline/dextran infusion for post- traumatic hypotension. The U.S.A. Multicenter Trial. Ann Surg 213(5):482–491PubMedCrossRefGoogle Scholar
  73. 73.
    Moss GS, Gould SA (1988) Plasma expanders. An update. Am J Surg 155(3):425–434PubMedCrossRefGoogle Scholar
  74. 74.
    Muizelaar JP et al (1993) Improving the outcome of severe head injury with the oxygen radical scavenger polyethylene glycol-conjugated superoxide dismutase: a phase II trial. J Neurosurg 78(3):375–382PubMedGoogle Scholar
  75. 75.
    Nicholls D, Attwell D (1990) The release and uptake of excitatory amino acids. Trends Pharmacol Sci 11(11):462–468PubMedCrossRefGoogle Scholar
  76. 76.
    Nilsson P et al (1996) Calcium movements in traumatic brain injury: the role of glutamate receptor-operated ion channels. J Cereb Blood Flow Metab 16(2):262–270PubMedCrossRefGoogle Scholar
  77. 77.
    Nonaka M et al (1998) Changes in brain organic osmolytes in experimental cerebral ischemia. J Neurol Sci 157(1):25–30PubMedCrossRefGoogle Scholar
  78. 78.
    Oldfield BJ et al (1994) Fos production in retrogradely labelled neurons of the lamina terminalis following intravenous infusion of either hypertonic saline or angiotensin II. Neuroscience 60(1):255–262PubMedCrossRefGoogle Scholar
  79. 79.
    Olson JE et al (1997) Blood-brain barrier water permeability and brain osmolyte content during edema development. Acad Emerg Med 4(7):662–673PubMedGoogle Scholar
  80. 80.
    Onarheim H et al (1990) Effectiveness of hypertonic saline-dextran 70 for initial fluid resuscitation of major burns. J Trauma 30(5):597–603PubMedCrossRefGoogle Scholar
  81. 81.
    Partrick DA et al (1998) Hypertonic saline activates lipid-primed human neutrophils for enhanced elastase release. J Trauma 44(4):592–597, discussion 598PubMedCrossRefGoogle Scholar
  82. 82.
    Peterson B et al (2000) Prolonged hypernatremia controls elevated intracranial pressure in head-injured pediatric patients. Crit Care Med 28(4):1136–1143PubMedCrossRefGoogle Scholar
  83. 83.
    Pfenninger J, Wagner BP (2001) Hypertonic saline in severe pediatric head injury. Crit Care Med 29(7):1489PubMedCrossRefGoogle Scholar
  84. 84.
    Poli de Figueiredo LF et al (1995) Hemodynamic improvement in hemorrhagic shock by aortic balloon occlusion and hypertonic saline solutions. Cardiovasc Surg 3(6):679–686PubMedCrossRefGoogle Scholar
  85. 85.
    Qureshi AI et al (1998) Use of hypertonic (3%) saline/acetate infusion in the treatment of cerebral edema: effect on intracranial pressure and lateral displacement of the brain. Crit Care Med 26(3):440–446PubMedCrossRefGoogle Scholar
  86. 86.
    Qureshi AI et al (1999) Use of hypertonic saline/acetate infusion in treatment of cerebral edema in patients with head trauma: experience at a single center. J Trauma 47(4):659–665PubMedGoogle Scholar
  87. 87.
    Qureshi AI, Wilson DA, Traystman RJ (1999) Treatment of elevated intracranial pressure in experimental intracerebral hemorrhage: comparison between mannitol and hypertonic saline. Neurosurgery 44(5):1055–1063, discussion 1063–1064PubMedCrossRefGoogle Scholar
  88. 88.
    Qureshi AI, Suarez JI, Bhardwaj A (1998) Malignant cerebral edema in patients with hypertensive intracerebral hemorrhage associated with hypertonic saline infusion: a rebound phenomenon? J Neurosurg Anesthesiol 10(3):188–192PubMedCrossRefGoogle Scholar
  89. 89.
    Rabinovici R et al (1992) Hemodynamic, hematologic and eicosanoid mediated mechanisms in 7.5 percent sodium chloride treatment of uncontrolled hemorrhagic shock. Surg Gynecol Obstet 175(4):341–354PubMedGoogle Scholar
  90. 90.
    Rabinovici R et al (1996) Hypertonic saline treatment of acid aspiration-induced lung injury. J Surg Res 60(1):176–180PubMedCrossRefGoogle Scholar
  91. 91.
    Ramires JA et al (1992) Acute hemodynamic effects of hypertonic (7.5%) saline infusion in patients with cardiogenic shock due to right ventricular infarction. Circ Shock 37(3):220–225PubMedGoogle Scholar
  92. 92.
    Reed RL 2nd et al (1991) Hypertonic saline alters plasma clotting times and platelet aggregation. J Trauma 31(1):8–14PubMedGoogle Scholar
  93. 93.
    Riddez L et al (1998) Central and regional hemodynamics during uncontrolled bleeding using hypertonic saline dextran for resuscitation. Shock 10(3):176–181PubMedCrossRefGoogle Scholar
  94. 94.
    Rizoli SB et al (1999) Hypertonicity prevents lipopolysaccharide-stimulated CD11b/CD18 expression in human neutrophils in vitro: role for p38 inhibition. J Trauma 46(5):794–798, discussion 798–799PubMedGoogle Scholar
  95. 95.
    Rizoli SB et al (1998) Immunomodulatory effects of hypertonic resuscitation on the development of lung inflammation following hemorrhagic shock. J Immunol 161(11):6288–6296PubMedGoogle Scholar
  96. 96.
    Sato K et al (1993) Role of vagal nerves and atrial natriuretic hormone in vasopressin release and a diuresis under hypertonic volume expansion. Acta Endocrinol (Copenh) 129(1):65–74Google Scholar
  97. 97.
    Schatzmann C et al (1998) Treatment of elevated intracranial pressure by infusions of 10% saline in severely head injured patients. Acta Neurochir Suppl 71:31–33PubMedGoogle Scholar
  98. 98.
    Schroder ML et al (1998) Early cerebral blood volume after severe traumatic brain injury in patients with early cerebral ischemia. Acta Neurochir Suppl 71:127–130PubMedGoogle Scholar
  99. 99.
    Schroder ML et al (1998) Regional cerebral blood volume after severe head injury in patients with regional cerebral ischemia. Neurosurgery 42(6):1276–1280, discussion 1280–1281PubMedCrossRefGoogle Scholar
  100. 100.
    Schroder ML, Muizelaar JP, Kuta AJ (1994) Documented reversal of global ischemia immediately after removal of an acute subdural hematoma. Report of two cases. J Neurosurg 80(2):324–327PubMedGoogle Scholar
  101. 101.
    Schwarz S et al (1998) Effects of hypertonic saline hydroxyethyl starch solution and mannitol in patients with increased intracranial pressure after stroke. Stroke 29(8):1550–1555PubMedGoogle Scholar
  102. 102.
    Shackford SR (1997) Effect of small-volume resuscitation on intracranial pressure and related cerebral variables. J Trauma 42(5 Suppl):S48–S53PubMedGoogle Scholar
  103. 103.
    Shackford SR, Schmoker JD, Zhuang J (1994) The effect of hypertonic resuscitation on pial arteriolar tone after brain injury and shock. J Trauma 37(6):899–908PubMedGoogle Scholar
  104. 104.
    Shackford SR, Zhuang J, Schmoker J (1992) Intravenous fluid tonicity: effect on intracranial pressure, cerebral blood flow, and cerebral oxygen delivery in focal brain injury. J Neurosurg 76(1):91–98PubMedCrossRefGoogle Scholar
  105. 105.
    Shields CJ et al (2000) Hypertonic saline attenuates end-organ damage in an experimental model of acute pancreatitis. Br J Surg 87(10):1336–1340PubMedCrossRefGoogle Scholar
  106. 106.
    Simma B et al (1998) A prospective, randomized, and controlled study of fluid management in children with severe head injury: lactated Ringer’s solution versus hypertonic saline. Crit Care Med 26(7):1265–1270PubMedCrossRefGoogle Scholar
  107. 107.
    Spiers JP et al (1993) Resuscitation of hemorrhagic shock with hypertonic saline/dextran or lactated Ringer’s supplemented with AICA riboside. Circ Shock 40(1):29–36PubMedGoogle Scholar
  108. 108.
    Steenbergen JM, Bohlen HG (1993) Sodium hyperosmolarity of intestinal lymph causes arteriolar vasodilation in part mediated by EDRF. Am J Physiol 265(1 Pt 2):H323–H328PubMedGoogle Scholar
  109. 109.
    Sterns RH, Riggs JE, Schochet SS Jr (1986) Osmotic demyelination syndrome following correction of hyponatremia. N Engl J Med 314(24):1535–1552PubMedCrossRefGoogle Scholar
  110. 110.
    Suarez JI et al (1999) Administration of hypertonic (3%) sodium chloride/acetate in hyponatremic patients with symptomatic vasospasm following subarachnoid hemorrhage. J Neurosurg Anesthesiol 11(3):178–184PubMedCrossRefGoogle Scholar
  111. 111.
    Suarez JI et al (1998) Treatment of refractory intracranial hypertension with 23.4% saline. Crit Care Med 26(6):1118–1122PubMedCrossRefGoogle Scholar
  112. 112.
    Thiel M et al (2001) Effects of hypertonic saline on expression of human polymorphonuclear leukocyte adhesion molecules. J Leukoc Biol 70(2):261–273PubMedGoogle Scholar
  113. 113.
    Tollofsrud S et al (1998) Hypertonic saline and dextran in normovolaemic and hypovolaemic healthy volunteers increases interstitial and intravascular fluid volumes. Acta Anaesthesiol Scand 42(2):145–153PubMedCrossRefGoogle Scholar
  114. 114.
    Trachtman H (1991) Cell volume regulation: a review of cerebral adaptive mechanisms and implications for clinical treatment of osmolal disturbances. I. Pediatr Nephrol 5(6):743–750PubMedCrossRefGoogle Scholar
  115. 115.
    Trachtman H (1992) Cell volume regulation: a review of cerebral adaptive mechanisms and implications for clinical treatment of osmolal disturbances: II. Pediatr Nephrol 6(1):104–112PubMedCrossRefGoogle Scholar
  116. 116.
    Trachtman H et al (1993) The role of organic osmolytes in the cerebral cell volume regulatory response to acute and chronic renal failure. J Am Soc Nephrol 3(12):1913–1919PubMedGoogle Scholar
  117. 117.
    Unterberg A et al (1993) Long-term observations of intracranial pressure after severe head injury. The phenomenon of secondary rise of intracranial pressure. Neurosurgery 32(1): 17–23, discussion 23–24PubMedCrossRefGoogle Scholar
  118. 118.
    Vassar MJ, Perry CA, Holcroft JW (1990) Analysis of potential risks associated with 7.5% sodium chloride resuscitation of traumatic shock. Arch Surg 125(10):1309–1315PubMedGoogle Scholar
  119. 119.
    Vassar MJ, Perry CA, Holcroft JW (1993) Prehospital resuscitation of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl with added dextran: a controlled trial. J Trauma 34(5):622–632, discussion 632–633PubMedCrossRefGoogle Scholar
  120. 120.
    Vassar MJ et al (1991) 7.5% sodium chloride/dextran for resuscitation of trauma patients undergoing helicopter transport. Arch Surg 126(9):1065–1072PubMedGoogle Scholar
  121. 121.
    Vespa P et al (1998) Increase in extracellular glutamate caused by reduced cerebral perfusion pressure and seizures after human traumatic brain injury: a microdialysis study. J Neurosurg 89(6):971–982PubMedGoogle Scholar
  122. 122.
    Wade CE et al (1997) Individual patient cohort analysis of the efficacy of hypertonic saline/dextran in patients with traumatic brain injury and hypotension. J Trauma 42(5 Suppl):S61–S65PubMedGoogle Scholar
  123. 123.
    Walsh JC, Zhuang J, Shackford SR (1991) A comparison of hypertonic to isotonic fluid in the resuscitation of brain injury and hemorrhagic shock. J Surg Res 50(3):284–292PubMedCrossRefGoogle Scholar
  124. 124.
    Worthley LI, Cooper DJ, Jones N (1988) Treatment of resistant intracranial hypertension with hypertonic saline. Report of two cases. J Neurosurg 68(3):478–481PubMedGoogle Scholar
  125. 125.
    Yamashita T et al (1997) Induction of Na+/myo-inositol co-transporter mRNA after rat cryogenic injury. Brain Res Mol Brain Res 46(1–2):236–242PubMedCrossRefGoogle Scholar
  126. 126.
    Junger WG et al (1998) Hypertonicity regulates the function of human neutrophils by modulating chemoattractant receptor signaling and activating mitogen-activated protein kinase p38. J Clin Invest 101(12):2768–2779PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • R. Tyagi
    • 1
  • K. Donaldson
    • 1
  • C. M. Loftus
    • 1
  • J. Jallo
    • 1
    Email author
  1. 1.Department of Neurological SurgeryTemple UniversityPhiladelphiaUSA

Personalised recommendations