Skip to main content
Log in

Enriching Rotifers with “Premium” Microalgae: Rhodomonas lens

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The nutritional value of the marine cryptophyte Rhodomonas lens for the filter feeder Brachionus plicatilis as well as its biotechnological potential as a source of phycoerythrin (PE) and polyunsaturated fatty acids (PUFA) were evaluated in semi-continuous cultures maintained with different daily renewal rates (RR), from 10% (R10) to 50% (R50) of the total volume. Steady-state cell density decreased from 22 to 7 × 106 cells mL−1 with increasing RR, with the maximum cell productivity, nearly 0.4 g L−1 day−1, observed with R40. PE cell content attained the highest values with the highest RR (circa 9 pg cell−1). All treatments of R. lens maintained under nitrate-saturated conditions (R20-R50) showed a similar high content of PUFAs, > 60% of total fatty acids (FA), with linolenic acid (18:3n-3) and 18:4n-3, representing 12 and 29% of total FA respectively. The PUFA level in the nitrogen-limited R10 cultures was significantly lower (37%). R. lens promoted higher weight gain in the rotifer B. plicatilis than Tisochrysis lutea (T-ISO), a species commonly used for rotifer culture and enrichment. Significant differences were found in the protein content and in the ratio n-3/n-6 fatty acids among rotifers fed with R. lens from different RRs, with higher values being found in those fed with R. lens from higher RRs. The enrichment of the rotifers for short periods of 3 h was sufficient to modify the biochemical composition of the rotifers, but it was evidenced as too short for the accumulation of PUFAs, when compared to long-term (24 h) enrichment. The rotifers reflected the higher protein and PUFA content of R. lens cultivated with nutrient sufficient microalgae (R40) after only 3 h of enrichment. These results demonstrate that semi-continuous culture of R. lens under appropriate conditions can strongly enhance the nutritional value of this species, being reflected in the growth and biochemical composition of the filter feeder, even in short exposure periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bartual A, Lubián LM, Gálvez JA, Niell FX (2002) Effect of irradiance on growth, photosynthesis, pigment content and nutrient consumption in dense cultures of Rhodomonas salina (Wislouch) (Cryptophyceae). Cienc Mar 28:381–392

    CAS  Google Scholar 

  • Bennett A, Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58:419–435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bermúdez J, Rosales N, Loreto C et al (2004) Exopolysaccharide, pigment and protein production by the marine microalga Chroomonas sp. in semicontinuous cultures. World J Microbiol Biotechnol 20:179–183

    Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  PubMed  Google Scholar 

  • Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401

    Google Scholar 

  • Brown MR, McCausland MA, Kowalski K (1998) The nutritional value of four Australian microalgal strains fed to Pacific oyster Crassostrea gigas spat. Aquaculture 165:281–293

    Google Scholar 

  • Bryant DA, Guglielmi G, de Marsac NT et al (1979) The structure of cyanobacterial phycobilisomes: a model. Arch Microbiol 123:113–127

    CAS  Google Scholar 

  • Chaloub RM, Motta NMS, de Araujo SP et al (2015) Combined effects of irradiance, temperature and nitrate concentration on phycoerythrin content in the microalga Rhodomonas sp. (Cryptophyceae). Algal Res 8:89–94

    Google Scholar 

  • Collos Y, Mornet F, Sciandra A, Waser N, Larson A, Harrison PJ (1999) An optical method for the rapid measurement of micromolar concentrations of nitrate in marine phytoplankton cultures. J Appl Phycol 11:179–184

  • Costard GS, Machado RR, Barbarino E et al (2012) Chemical composition of five marine microalgae that occur on the Brazilian coast. Int J Fish Aquac 4:191–201

    CAS  Google Scholar 

  • Coutteau P, Geurden I, Camara MR et al (1997) Review on the dietary effects of phospholipids in fish and crustacean larviculture. Aquaculture 155:149–164

    CAS  Google Scholar 

  • da Silva AF, Lourenço SO, Chaloub RM (2009) Effects of nitrogen starvation on the photosynthetic physiology of a tropical marine microalga Rhodomonas sp. (Cryptophyceae). Aquat Bot 91:291–297

    Google Scholar 

  • Dunstan GA, Brown MR, Volkman JK (2005) Cryptophyceae and rhodophyceae; chemotaxonomy, phylogeny, and application. Phytochemistry 66:2557–2570

    CAS  PubMed  Google Scholar 

  • Eriksen N, Iversen J (1995) Photosynthetic pigments as nitrogen stores in the cryptophyte alga Rhodomonas sp. J Mar Biotechnol 9:193–195

    Google Scholar 

  • Eryalçın KM (2018) Effects of different commercial feeds and enrichments on biochemical composition and fatty acid profile of rotifer (Brachionus plicatilis, Müller 1786) and Artemia franciscana. Turk J Fish Aquat Sci 18:81–90

    Google Scholar 

  • Eryalçın K M (2019) Nutritional value and production performance of the rotifer Brachionus plicatilis Müller, 1786 cultured with different feeds at commercial scale. Aquaculture Int 27:875–890

    Google Scholar 

  • Estévez A, Giménez G (2017) Optimization of emulsion properties and enrichment conditions used in live prey enrichment. Aquac Nutr 23:1264–1273

    Google Scholar 

  • Fabregas J, Abalde J, Herrero C et al (1984) Growth of the marine microalga Tetraselmis suecica in batch cultures with different salinities and nutrient concentrations. Aquaculture 42:207–215

    Google Scholar 

  • Fábregas J, García D, Morales E et al (1998) Renewal rate of semicontinuous cultures of the microalga Porphyridium cruentum modifies phycoerythrin, exopolysaccharide and fatty acid productivity. J Ferment Bioeng 86:477–481

    Google Scholar 

  • Ferreira M, Maseda A, Fábregas J, Otero A (2008) Enriching rotifers with “premium” microalgae. Isochrysis aff. galbana clone T-ISO. Aquaculture 279:126–130

    Google Scholar 

  • Ferreira M, Coutinho P, Seixas P, Fábregas J, Otero A (2009) Enriching rotifers with “premium” microalgae. Nannochloropsis gaditana. Mar Biotechnol 11:585–595

    CAS  Google Scholar 

  • Ferreira M, Seixas P, Coutinho P, Fábregas J, Otero A (2011) Effect of the nutritional status of semi-continuous microalgal cultures on the productivity and biochemical composition of Brachionus plicatilis. Mar Biotechnol 13:1074–1085

    CAS  Google Scholar 

  • Ferreira M, Cortina-Burgueño Á, Freire I, Otero A (2018) Effect of nutritional status and concentration of Nannochloropsis gaditana as enrichment diet for the marine rotifer Brachionus sp. Aquaculture 491:351–357

    CAS  Google Scholar 

  • Glazer AN (1994) Phycobiliproteins — a family of valuable, widely used fluorophores. J Appl Phycol 6:105–112

    CAS  Google Scholar 

  • Glazer AN, Stryer L (1984) Phycofluor probes. Trends Biochem Sci 9:423–427

    CAS  Google Scholar 

  • Greenwold MJ, Cunningham BR, Lachenmyer EM, Pullman JM, Richardson TL, Dudycha JL (2019) Diversification of light capture ability was accompanied by the evolution of phycobiliproteins in cryptophyte algae. Proc R Soc B 286:20190655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guevara M, Bastardo L, Cortez R, et al (2011) Pastas de Rhodomonas salina (Cryptophyta) como alimento para Brachionus plicatilis (Rotifera)

  • Guevara M, Arredondo-Vega BO, Palacios Y, Saéz K, Gómez PI (2016) Comparison of growth and biochemical parameters of two strains of Rhodomonas salina (Cryptophyceae) cultivated under different combinations of irradiance, temperature, and nutrients. J Appl Phycol 28:2651–2660

    CAS  Google Scholar 

  • Guiry MD, Guiry GM (2019) No title. In: AlgaeBase. World-wide electron. Publ. Natl. Univ. Ireland, Galway. http://www.algaebase.org. Accessed 20 June 2019

  • Humphrey GF (1979) Photosynthetic characteristics of algae grown under constant illumination and light-dark regimes. J Exp Mar Biol Ecol 40:63–70

    CAS  Google Scholar 

  • Izquierdo MS (1996) Essential fatty acid requirements of cultured marine fish larvae. Aquac Nutr 2:183–191

    CAS  Google Scholar 

  • Jeffrey ST, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    CAS  Google Scholar 

  • Knuckey RM, Semmens GL, Mayer RJ, Rimmer MA (2005) Development of an optimal microalgal diet for the culture of the calanoid copepod Acartia sinjiensis: effect of algal species and feed concentration on copepod development. Aquaculture 249:339–351

    Google Scholar 

  • Kochert G (1978) Carbohydrate determination by the phenol-sulfuric acid method. In: Hellebust J, Craigie J (eds) Handbook of phycological methods. Physiological and biochemical methods. Cambridge University Press, London, pp 95–97

    Google Scholar 

  • Koski M, Klein Breteler W, Schogt N (1998) Effect of food quality on rate of growth and development of the pelagic copepod Pseudocalanus elongatus (Copepoda, Calanoida). Mar Ecol Prog Ser 170:169–187

    Google Scholar 

  • Lafarga-De la Cruz F, Valenzuela-Espinoza E, Millán-Núñez R et al (2006) Nutrient uptake, chlorophyll a and carbon fixation by Rhodomonas sp. (Cryptophyceae) cultured at different irradiance and nutrient concentrations. Aquac Eng 35:51–60

    Google Scholar 

  • Li K, Kjørsvik E, Bergvik M, Olsen Y (2015) Manipulation of the fatty acid composition of phosphatidylcholine and phosphatidylethanolamine in rotifers Brachionus Nevada and Brachionus Cayman. Aquac Nutr 21:85–97

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Ludwig M, Gibbs SP (1989) Localization of phycoerythrin at the lumenal surface of the thylakoid membrane in Rhodomonas lens. J Cell Biol 108:875–884

    CAS  PubMed  Google Scholar 

  • Marsh JB, Weinstein DB (1966) Simple charring method for determination of lipids. J Lipid Res 7:574–576

    CAS  PubMed  Google Scholar 

  • McKinnon AD, Duggan S, Nichols PD et al (2003) The potential of tropical paracalanid copepods as live feeds in aquaculture. Aquaculture 223:89–106

    Google Scholar 

  • Mejias C, Riquelme C, Sayes C, Plaza J, Silva-Aciares F (2018) Production of the rotifer Brachionus plicatilis (Müller 1786) in closed outdoor systems fed with the microalgae Nannochloropsis gaditana and supplemented with probiotic bacteria Pseudoalteromonas sp. (SLP1). Aquac Int 26:869–884

    CAS  Google Scholar 

  • Muller-Feuga A (2000) The role of microalgae in aquaculture: situation and trends. J Appl Phycol 12:527–534

    Google Scholar 

  • Novarino G (2012) Cryptomonad taxonomy in the 21 st century: the first two hundred years. In: Cryptomonad taxonomy in the 21st century: the first two hundred years. Psychological reports: current advances in algal taxonomy and its applications: phylogenetic, ecological and applied perspective. Institute of Botany, Polish Academy of Sciences, Kraków. pp 19–52

  • Ohs CL, Chang KL, Grabe SW et al (2010) Evaluation of dietary microalgae for culture of the calanoid copepod Pseudodiaptomus pelagicus. Aquaculture 307:225–232

    Google Scholar 

  • Otero A, Fábregas J (1997) Changes in the nutrient composition of Tetraselmis suecica cultured semicontinuously with different nutrient concentrations and renewal rates. Aquaculture 159:111–123

    CAS  Google Scholar 

  • Otero A, García D, Fábregas J (1997a) Factors controlling eicosapentaenoic acid production in semicontinuous cultures of marine microalgae. J Appl Phycol 9:465–469

    CAS  Google Scholar 

  • Otero A, García D, Morales ED et al (1997b) Manipulation of the biochemical composition of the eicosapentaenoic acid-rich microalga Isochrysis galbana in semicontinuous cultures. Biotechnol Appl Biochem 26:171–177

    CAS  Google Scholar 

  • Otero A, Domínguez A, Lamela T et al (1998) Steady-states of semicontinuous cultures of a marine diatom: effect of saturating nutrient concentrations. J Exp Mar Biol Ecol 227:23–33

    CAS  Google Scholar 

  • Parrish CC, French VM, Whiticar MJ (2012) Lipid class and fatty acid composition of copepods (Calanus finmarchicus, C. glacialis, Pseudocalanus sp., Tisbe furcata and Nitokra lacustris) fed various combinations of autotrophic and heterotrophic protists. J Plankton Res 34:356–375

    CAS  Google Scholar 

  • Patiño M (1995) Nutrición de Brachionus plicatilis y Artemia sp. con microalgas marinas. Universidad de Santiago de Compostela

  • Peltomaa E, Johnson M, Taipale S (2017) Marine cryptophytes are great sources of EPA and DHA. Mar Drugs 16:3

    PubMed Central  Google Scholar 

  • Phwan CK, Ong HC, Chen WH et al (2018) Overview: comparison of pretreatment technologies and fermentation processes of bioethanol from microalgae. Energy Convers Manag 173:81–94

    CAS  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    CAS  PubMed  Google Scholar 

  • Raghav Sonani R, Prasad Rastogi R, Patel R et al (2016) Recent advances in production, purification and applications of phycobiliproteins. World J Biol Chem 7:100–109

    PubMed  Google Scholar 

  • Renaud SM, Thinh L-V, Parry DL (1999) The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture 170:147–159

    CAS  Google Scholar 

  • Renaud SM, Thinh L-V, Lambrinidis G, Parry DL (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211:195–214

    CAS  Google Scholar 

  • Rodriguez C, Perez JA, Lorenzo A, Cejas JR (1994) Comparative nutrition papers n-3 HUFA requirement of larval gilthead seabream Sparus aurata when using high levels of eicosapentaenoic acid. Camp Biochem Physiol 107:693–698

    Google Scholar 

  • Sales R, Derner RB, Tsuzuki MY (2019) Effects of different harvesting and processing methods on Nannochloropsis oculata concentrates and their application on rotifer Brachionus sp. cultures. J Appl Phycol. https://doi.org/10.1007/s10811-019-01877-8

    CAS  Google Scholar 

  • Sathasivam R, Radhakrishnan R, Hashem A, Abd_Allah EF (2019) Microalgae metabolites: a rich source for food and medicine. Saudi J Biol Sci 26:709–722

    CAS  PubMed  Google Scholar 

  • Sato N, Murata N (1988) [24] Membrane lipids. Methods Enzymol 167:251–259

    CAS  Google Scholar 

  • Seixas P, Coutinho P, Ferreira M, Otero A (2009) Nutritional value of the cryptophyte Rhodomonas lens for Artemia sp. J Exp Mar Biol Ecol. https://doi.org/10.1016/j.jembe.2009.09.007

    Google Scholar 

  • Sekar S, Chandramohan M (2008) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 20:113–136

    Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    CAS  PubMed  Google Scholar 

  • Thépot V, Mangott A, Pirozzi I (2016) Rotifers enriched with a mixed algal diet promote survival, growth and development of barramundi larvae, Lates calcarifer (Bloch). Aquacult Rep 3:147–158

    Google Scholar 

  • Thoisen C, Vu MTT, Carron-Cabaret T, Jepsen PM, Nielsen SL, Hansen BW (2018) Small-scale experiments aimed at optimization of large-scale production of the microalga Rhodomonas salina. J Appl Phycol 30:2193–2202

    CAS  Google Scholar 

  • Thomas EN, Lonsmann IJJ (1995) Photosynthetic pigments as nitrogen stores in the cryptophyte alga Rhodomonas sp. J Mar Biotechnol 3:193–195

    Google Scholar 

  • Tremblay R, Cartier S, Miner P et al (2007) Effect of Rhodomonas salina addition to a standard hatchery diet during the early ontogeny of the scallop Pecten maximus. Aquaculture 262:410–418

    Google Scholar 

  • Utting SD, Helm MM (1985) Improvement of sea water quality by physical and chemical pre-treatment in a bivalve hatchery. Aquaculture 44:133–144

    CAS  Google Scholar 

  • Valenzuela-Espinoza E, Lafarga-De-La-Cruz F, Millán-Nuñez R, Núñez-Cebrero F (2005) Growth, nutrient uptake and proximate composition of Rhodomonas sp. cultured using f/2 medium and agricultural fertilizers. Cienc Mar 31:79–89

    Google Scholar 

  • Vu MTT, Douëtte C, Rayner TA, Thoisen C, Nielsen SL, Hansen BW (2016) Optimization of photosynthesis, growth, and biochemical composition of the microalga Rhodomonas salina—an established diet for live feed copepods in aquaculture. J Appl Phycol 28:1485–1500

    CAS  Google Scholar 

  • Wenzel A, Bergstrom A-K, Jansson M, Vrede T (2012) Survival, growth and reproduction of Daphnia galeata feeding on single and mixed Pseudomonas and Rhodomonas diets. Freshw Biol 57:835–846

    CAS  Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799

    CAS  PubMed  Google Scholar 

  • Yamamoto S, Yamato R, Yoshimatsu T (2018) Optimum culture conditions of Rhodomonas sp. Hf-1 strain as a live food for aquatic animals. Fish Sci 84:691–697

    CAS  Google Scholar 

  • Zhang J, Wu C, Pellegrini D et al (2013) Effects of different monoalgal diets on egg production, hatching success and apoptosis induction in a Mediterranean population of the calanoid copepod Acartia tonsa (Dana). Aquaculture 400–401:65–72

    Google Scholar 

Download references

Funding

This work was supported by the grant “Axudas do Programa de Consolidación e Estructuración de Unidades de Investigación Competitivas (GPC)” from the Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia (ED431B2017/53).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Otero.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 144 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coutinho, P., Ferreira, M., Freire, I. et al. Enriching Rotifers with “Premium” Microalgae: Rhodomonas lens. Mar Biotechnol 22, 118–129 (2020). https://doi.org/10.1007/s10126-019-09936-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-019-09936-4

Keywords

Navigation