Advertisement

Chinese Journal of Polymer Science

, Volume 37, Issue 9, pp 930–935 | Cite as

pH-responsive AIE-active Polyethylene-based Block Copolymers

  • Yu Jiang
  • Nikos HadjichristidisEmail author
Article
  • 43 Downloads

Abstract

A novel synthetic strategy towards pH-responsive aggregation-induced emission (AIE)-active tetraphenylethene (TPE)-functionalized polyethylene-based block copolymers is presented. Tris(3-(4-(1,2,2-triphenylvinyl)phenoxy)propyl)borane was used to initiate the polyhomologation of dimethylsulfoxonium methylide to afford well-defined α-TPE-ω-OH linear polyethylenes (PE). The terminal hydroxyl groups were transformed to atom transfer radical polymerization (ATRP) initiating sites by esterification with α-bromoisobutyryl bromide, followed by polymerization of tert-butyl acrylate (tBA) to provide TPE-PE-b-PtBA block copolymers. After hydrolysis of the tBu group to COOH group, the corresponding pH-responsive TPE-PE-b-PAA block copolymers were obtained. All synthesized block copolymers revealed AIE behavior either in solution or bulk. Due to the pH-responsivity of PAA chains, the aggregation state at different pH and consequently the fluorescence intensity changed. Also, the synthesized block copolymers exhibited ion-specificity fluorescence properties.

Keywords

Polyhomologation ATRP Polyethylene-b-poly(acrylic acid) AIE pH-responsivity Ion-specificity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The research reported in this publication was supported by King Abdullah University of Science and Technology (KAUST).

Supplementary material

10118_2019_2330_MOESM1_ESM.pdf (199 kb)
pH-responsive AIE-active Polyethylene-based Block Copolymers

References

  1. 1.
    Bünzli, J. C. G. Lanthanide luminescence for biomedical analyses and imaging. Chem. Rev. 2010, 110, 2729–2755.CrossRefPubMedGoogle Scholar
  2. 2.
    Jüstel, T.; Nikol, H.; Ronda, C. New developments in the field of luminescent materials for lighting and displays. Angew. Chem. Int. Ed. 1998, 37, 3084–3103.CrossRefGoogle Scholar
  3. 3.
    Schmidt, A.; Anderson, M.; Armstrong, N. R. Electronic states of vapor deposited electron and hole transport agents and luminescent materials for light-emitting diodes. J. Appl. Phys. 1995, 78, 5619–5625.CrossRefGoogle Scholar
  4. 4.
    Bredol, M.; Kynast, U.; Ronda, C. Designing luminescent materials. Adv. Mater. 1991, 3, 361–367.CrossRefGoogle Scholar
  5. 5.
    Luo, J.; Xie, Z.; Lam, J. W.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 1740, 1740–1741.CrossRefGoogle Scholar
  6. 6.
    Förster, T.; Kasper, K. Ein konzentrationsumschlag der fluoreszenz des pyrens. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 1955, 59, 976–980.Google Scholar
  7. 7.
    Feng, H. T.; Yuan, Y. X.; Xiong, J. B.; Zheng, Y. S.; Tang, B. Z. Macrocycles and cages based on tetraphenylethylene with aggregation-induced emission effect. Chem. Soc. Rev. 2018, 47, 7452–7476.CrossRefPubMedGoogle Scholar
  8. 8.
    Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940.CrossRefPubMedGoogle Scholar
  9. 9.
    Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388.CrossRefPubMedGoogle Scholar
  10. 10.
    Qin, A.; Lam, J. W. Y.; Tang, B. Z. Luminogenic polymers with aggregation-induced emission characteristics. Prog. Polym. Sci. 2012, 37, 182–209.CrossRefGoogle Scholar
  11. 11.
    Hu, R.; Leung, N. L.; Tang, B. Z. AIE macromolecules: Syntheses, structures and functionalities. Chem. Soc. Rev. 2014, 43, 4494–4562.CrossRefPubMedGoogle Scholar
  12. 12.
    Stuart, M. A. C.; Huck, W. T.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101–113.CrossRefPubMedGoogle Scholar
  13. 13.
    Liu, F.; Urban, M. W. Recent advances and challenges in designing stimuli-responsive polymers. Prog. Polym. Sci. 2010, 35, 3–23.CrossRefGoogle Scholar
  14. 14.
    Lendlein, A.; Shastri, V. P. Stimuli-sensitive polymers. Adv. Mater. 2010, 22, 3344–3347.CrossRefPubMedGoogle Scholar
  15. 15.
    De las Heras Alarcón, C.; Pennadam, S.; Alexander, C. Stimuli responsive polymers for biomedical applications. Chem. Soc. Rev. 2005, 34, 276–285.CrossRefPubMedGoogle Scholar
  16. 16.
    Roth, P. J.; Lowe, A. B. Stimulus-responsive polymers. Polym. Chem. 2017, 8, 10–11.CrossRefGoogle Scholar
  17. 17.
    Kocak, G.; Tuncer, C.; Bütün, V. pH-responsive polymers. Polym. Chem. 2017, 8, 144–176.CrossRefGoogle Scholar
  18. 18.
    Wei, M.; Gao, Y.; Li, X.; Serpe, M. J. Stimuli-responsive polymers and their applications. Polym. Chem. 2017, 8, 127–143.CrossRefGoogle Scholar
  19. 19.
    McLaurin, E. J.; Bradshaw, L. R.; Gamelin, D. R. Dual-emitting nanoscale temperature sensors. Chem. Mater. 2013, 25, 1283–1292.CrossRefGoogle Scholar
  20. 20.
    Cui, Y.; Song, R.; Yu, J.; Liu, M.; Wang, Z.; Wu, C.; Yang, Y.; Wang, Z.; Chen, B.; Qian, G. Dual-emitting MOF dye composite for ratiometric temperature sensing. Adv. Mater. 2015, 27, 1420–1425.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang, Z.; Hadjichristidis, N. Temperature and pH-dual responsive AIE-active core crosslinked polyethylene-poly (methacrylic acid) multimiktoarm star copolymers. ACS Macro Lett. 2018, 7, 886–891.CrossRefGoogle Scholar
  22. 22.
    Shea, K. J. Polyhomologation: The living polymerization of ylides. Chem. Eur. J. 2000, 6, 1113–1119.CrossRefPubMedGoogle Scholar
  23. 23.
    Shea, K.; Walker, J.; Zhu, H.; Paz, M.; Greaves, J. Polyhomologation A living polymethylene synthesis. J. Am. Chem. Soc. 1997, 119, 9049–9050.CrossRefGoogle Scholar
  24. 24.
    Luo, J.; Shea, K. J. Polyhomologation. A living C1 polymerization. Acc. Chem. Res. 2010, 43, 1420–1433.CrossRefPubMedGoogle Scholar
  25. 25.
    Wang, D.; Hadjichristidis, N. Terpolymers from borane-initiated copolymerization of triphenyl arsonium and sulfoxonium ylides: An unexpected light emission. Angew. Chem. 2019, 131, 6361–6365.CrossRefGoogle Scholar
  26. 26.
    Jiang, Y.; Zhang, Z.; Wang, D.; Hadjichristidis, N. An efficient and general strategy toward the synthesis of polyethylene-based cyclic polymers. Macromolecules 2018, 51, 3193–3202.CrossRefGoogle Scholar
  27. 27.
    Xue, Y.; Lu, H. C.; Zhao, Q. L.; Huang, J.; Xu, S. G.; Cao, S. K.; Ma, Z. Polymtmylene-b-poly(ttyeene-co-2,3,4,5,6-pentafluoro styrene) copolymers: Synthesis and fabrication of their porous films. Polym. Chem. 2013, 4, 307–312.CrossRefGoogle Scholar
  28. 28.
    He, Q.; Ren, J.; Ren, J.; Pang, K.; Ma, Z.; Zhu, X.; Song, R. Polymethylene-b-poly(acrylic acid) diblock copolymers: Aggregation and crystallization in the presence of CaCl2. Eur. Polym. J. 2017, 95, 174–185.CrossRefGoogle Scholar
  29. 29.
    Wang, H.; Xu, F.; Cui, K.; Zhang, H.; Huang, J.; Zhao, Q.; Jiang, T.; Ma, Z. Synthesis of polymethylene-b-poly(vinyl acetate) block copolymer via visible light induced radical polymerization and its application. RSC Adv. 2017, 7, 42484–42490.CrossRefGoogle Scholar
  30. 30.
    Xue, Y.; Zhang, S. S.; Cui, K.; Huang, J.; Zhao, Q. L.; Lan, P.; Cao, S. K.; Ma, Z. New polymethylene-based AB2 star copolymers synthesized via a combination of polyhomologation of ylides and atom transfer radical polymerization. RSC Adv. 2015, 5, 7090–7097.CrossRefGoogle Scholar
  31. 31.
    Wang, D.; Hadjichristidis, N. Allyl borates: A novel class of polyhomologation initiators. Chem. Commun. 2017, 53, 1196–1199.CrossRefGoogle Scholar
  32. 32.
    Zhang, H.; Banerjee, S.; Faust, R.; Hadjichristidis, N. Living cationic polymerization and polyhomologation: An ideal combination to synthesize functionalized polyethylene-polyisobutylene block copolymers. Polym. Chem. 2016, 7, 1217–1220.CrossRefGoogle Scholar
  33. 33.
    Zhang, Z.; Altaher, M.; Zhang, H.; Wang, D.; Hadjichristidis, N. Synthesis of well-defined polyethylene-based 3-miktoarm star copolymers and terpolymers. Macromolecules 2011, 49, 2630–2638.CrossRefGoogle Scholar
  34. 34.
    Zhang, Z.; Gnanou, Y.; Hadjichristidis, N. Well-defined 4-arm stars with hydroxy-terminated polyethylene, polyethylene-b-polycaprolactone and polyethylene-b-(polymethyl methacrylate) 2 arms. Polym. Chem. 2011, 7, 5507–5511.CrossRefGoogle Scholar
  35. 35.
    Zhang, Z.; Zhang, H.; Gnanou, Y.; Hadjichristidis, N. Polyhomologation based on in situ generated boron-thexyl-silaboracyclic initiating sites: A novel strategy towards the synthesis of polyethylene-based complex architectures. Chem. Commun. 2015, 51, 9936–9938.CrossRefGoogle Scholar
  36. 36.
    Zhang, H.; Gnanou, Y.; Hadjichristidis, N. Well-defined polyethylene molecular brushes by polyhomologation and ring opening metathesis polymerization. Polym. Chem. 2014, 5, 6431–6434.CrossRefGoogle Scholar
  37. 37.
    Wang, D.; Zhang, Z.; Hadjichristidis, N. C1 polymerization: A unique tool towards polyethylene-based complex macromolecular architectures. Polym. Chem. 2017, 8, 4062–4073.CrossRefGoogle Scholar
  38. 38.
    Jiang, Y.; Hadjichristidis, N. Tetraphenylethene-functionalized polyethylene-based polymers with aggregation-induced emission. Macromolecules 2019, 52, 1955–1964.CrossRefGoogle Scholar
  39. 39.
    Corey, E.; Chaykovsky, M. Dimethyloxosulfonium methylide ((CH3)2SOCH2) and dimethylsulfonium methylide ((CH3)2SCH2). Formation and application to organic synthesis. J. Am. Chem. Soc. 1965, 87, 1353–1364.CrossRefGoogle Scholar
  40. 40.
    Zhang, H.; Alkayal, N.; Gnanou, Y.; Hadjichristidis, N. Anionic polymerization and polyhomologation: An ideal combination to synthesize polyethylene-based block copolymers. Chem. Commun. 2013, 49, 8952–8954.CrossRefGoogle Scholar
  41. 41.
    Guan, X.; Zhang, D.; Meng, L.; Zhang, Y.; Jia, T.; Jin, Q.; Wei, Q.; Lu, D.; Ma, H. Various tetraphenylethene-based aiegens with four functional polymer arms: Versatile synthetic approach and photophysical properties. Ind. Eng. Chem. Res. 2017, 56, 680–686.CrossRefGoogle Scholar
  42. 42.
    Chen, F.; Li, C.; Wang, X.; Liu, G.; Zhang, G. pH and ion-species sensitive fluorescence properties of star polyelectrolytes containing a triphenylene core. Soft Matter 2012, 8, 6364–6370.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis LaboratoryKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia

Personalised recommendations