Advertisement

Boc-phenylalanine Grafted Poly(3,4-propylenedioxythiophene) Film for Electrochemically Chiral Recognition of 3,4-Dihydroxyphenylalanine Enantiomers

  • Jun-Long Niu
  • Ke-Ke Chai
  • Mei-Xing Zeng
  • Tian-Tian Wang
  • Chun-Yan Zhang
  • Shuai ChenEmail author
  • Jing-Kun XuEmail author
  • Xue-Min DuanEmail author
Article
  • 4 Downloads

Abstract

To prepare chiral monomer with single chiral center and higher stereospecificity, a pair of amino-functionalized chiral 3,4-propylenedioxythiophene (ProDOT) derivatives, chiral (3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-3-yl)methyl 2-[(tert-butoxycarbonyl) amino]-3-phenylpropanoate (ProDOT-Boc-Phe), were synthesized. Chiral poly[(3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-3-yl)methyl 2-[(tert-butoxycarbonyl)amino]-3-phenylpropanoate] (PProDOT-Boc-Phe) modified electrodes were synthesized via potentiostatic polymerization of chiral ProDOT-Boc-Phe. Chiral PProDOT-Boc-Phe films displayed good reversible redox activities. The enantioselective recognition between chiral PProDOT-Boc-Phe modified glassy carbon electrodes and DOPA enantiomers was achieved by different electrochemical technologies, including cyclic voltammetry (CV), square wave voltammetry (SWV), and differential pulse voltammetry (DPV). (D)-PProDOT-Boc-Phe and (L)-PProDOT-Boc-Phe showed higher peak current responses toward L-DOPA and D-DOPA, respectively.

Keywords

Chiral conducting polymer Amino acids Chiral sensors 3,4-Dihydroxyphenylalanine Electrochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (Nos. 51762020 and 51603095), the Natural Science Foundation of Jiangxi Province (Nos. 20171ACB20026 and 20181BAB206015), the Jiangxi Provincial Department of Education (No. GJJ170662), the Innovation Driven "5511" the Natural Science Foundation of Jiangxi Province (No. 20165BCB18016), Students Innovation and Entrepreneurship Training Program (No. 20181204066), Projects for Postgraduate Innovation in Jiangxi (No. YC2017-X19), and the Jiangxi Provincial Key Laboratory of Drug Design and Evaluation (No. 20171BCD40015) for their financial support of this work.

References

  1. 1.
    Sanganyado, E.; Lu, Z. J.; Fu, Q. G.; Schlenk, D.; Gan, J. Chiral pharmaceuticals: A review on their environmental occurrence and fate processes. Water Res. 2017, 124, 527–542.CrossRefGoogle Scholar
  2. 2.
    Ribeiro, C.; Santos, C.; Gonçalves, V.; Ramos, A.; Afonso, C.; Tiritan, M. E. Chiral drug analysis in forensic chemistry: An overview. Molecules 2018, 23, 262–309.CrossRefGoogle Scholar
  3. 3.
    Pezzoli, G.; Zini, M. Levodopa in Parkinson’s disease: From the past to the future. Expert Opin. Pharmaco. 2010, 11, 627–635.CrossRefGoogle Scholar
  4. 4.
    Poewe, W.; Antonini, A.; Zijlmans, J. C.; Burkhard, P. R.; Vingerhoets, F. Levodopa in the treatment of Parkinson’s disease: An old drug still going strong. Clin. Interv. Aging 2010, 5, 229–238.Google Scholar
  5. 5.
    Zhang, Q.; Huang, Y.; Guo, L.; Chen, C.; Guo, D.; Chen, Y.; Fu, Y. DNA-based nanocomposite as electrochemical chiral sensing platform for the enantioselective interaction with quinine and quinidine. New J. Chem. 2014, 38, 4600–4606.CrossRefGoogle Scholar
  6. 6.
    Watarai, H.; Kurahashi, Y. Chiral recognition of 2-alkylalcohols with magnetic circular dichroism measurement of porphyrin J-aggregate on silica gel plate. Anal. Chem. 2016, 88, 4619–4623.CrossRefGoogle Scholar
  7. 7.
    Balint, A.; Cârje, A. G.; Muntean, D. L.; Imre, S. The influence of some parameters on chiral separation of ibuprofen by high-performance liquid chromatography and capillary electrophoresis. Acta Med. Mar. 2017, 63, 36–40.Google Scholar
  8. 8.
    Lazzeretti, P. Chiral discrimination in nuclear magnetic resonance spectroscopy. J. Phys.: Condens. Matter 2017, 29, 443001–443094.Google Scholar
  9. 9.
    Schurig, V. Chiral separations using gas chromatography. TrAC, Trends Anal. Chem. 2002, 21, 647–661.CrossRefGoogle Scholar
  10. 10.
    Prior, A.; Coliva, G.; Jong, G. J.; Somsen, G. W. Chiral capillary electrophoresis with UV-excited fluorescence detection for the enantioselective analysis of 9-fluorenylmethoxycarbonylderivatized amino acids. Anal. Bioanal. Chem. 2018, 410, 4979–4990.CrossRefGoogle Scholar
  11. 11.
    Huang, Y.; Han, Q.; Zhang, Q.; Guo, L.; Guo, D.; Fu, Y. A fast chiral sensing to DOPA enantiomers via poly-lysine films matrixes. Electrochim. Acta 2013, 113, 564–569.CrossRefGoogle Scholar
  12. 12.
    Trojanowicz, M. Enantioselective electrochemical sensors and biosensors: A mini-review. Electrochem. Commun. 2014, 38, 47–52.CrossRefGoogle Scholar
  13. 13.
    Wang, Z.; Xu, J.; Yao, Y.; Zhang, L.; Wen, Y.; Song, H.; Zhu, D. Facile preparation of highly water-stable and flexible PEDOT: PSS organic/inorganic composite materials and their application in electrochemical sensors. Sens. Actuators, B 2014, 196, 357–369.CrossRefGoogle Scholar
  14. 14.
    Manoli, K.; Magliulo, M.; Torsi, L. Chiral sensor devices for differentiation of enantiomers. Topics Curr. Chem. 2013, 341, 133–176.CrossRefGoogle Scholar
  15. 15.
    Li, J.; Hu, X.; Wang, J. Electrochemical recognition of chiral molecules with poly(4-bromoaniline) modified gold electrode. Electroanalysis 2013, 25, 1975–1980.CrossRefGoogle Scholar
  16. 16.
    Zhang, Y.; Lu, B.; Dong, L.; Sun, H.; Hu, D.; Xing, H.; Duan, X.; Chen, S.; Xu, J. Solvent effects on the synthesis, characterization and electrochromic properties of acetic acid modified polyterthiophene. Electrochim. Acta 2016, 220, 122–129.CrossRefGoogle Scholar
  17. 17.
    Caras-Quintero, D.; Bäuerle, P. Synthesis of the first enantiomerically pure and chiral, disubstituted 3,4-ethylenedioxythiophenes (EDOTs) and corresponding stereo- and regioregular PEDOTs. Chem. Commun. 2004, 926–927.Google Scholar
  18. 18.
    Jeong, Y. S.; Akagi, K. Control of chirality and electrochromism in copolymer-type chiral PEDOT derivatives by means of electrochemical oxidation and reduction. Macromolecules 2011, 44, 2418–2426.CrossRefGoogle Scholar
  19. 19.
    Dong, L.; Zhang, Y.; Duan, X.; Zhu, X.; Sun, H.; Xu, J. Chiral PEDOT-based enantioselective electrode modification material for chiral electrochemical sensing: Mechanism and model of chiral recognition. Anal. Chem. 2017, 89, 9695–9702.CrossRefGoogle Scholar
  20. 20.
    Dong, L.; Zhang, L.; Duan, X.; Mo, D.; Xu, J.; Zhu, X. Synthesis and characterization of chiral PEDOT enantiomers bearing chiral moieties in side chains: Chiral recognition and its mechanism using electrochemical sensing technology. RSC Adv. 2016, 6, 11536–11545.CrossRefGoogle Scholar
  21. 21.
    Dong, L.; Lu, B.; Duan, X.; Xu, J.; Hu, D.; Zhang, K.; Sun, H.; Ming, S.; Wang, Z.; Zhen, S. Novel chiral PEDOTs for selective recognition of 3,4-dihydroxyphenylalanine enantiomers: Synthesis and characterization. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 2238–2251.CrossRefGoogle Scholar
  22. 22.
    Dong, L. Q.; Hu, D. F.; Duan, X. M.; Wang, Z. P.; Zhang, K. X.; Zhu, X. F.; Sun, H.; Zhang, Y. S.; Xu, J. K. Synthesis and characterization of D-/L-methionine grafted PEDOTs for selective recognition of 3,4-dihydroxyphenylalanine enantiomers. Chinese J. Polym. Sci. 2016, 34, 563–577.CrossRefGoogle Scholar
  23. 23.
    Hu, D.; Lu, B.; Duan, X.; Xu, J.; Zhang, L.; Zhang, K., Zhang, S.; Zhen, S. Synthesis of novel chiral L-leucine grafted PEDOT derivatives with excellent electrochromic performances. RSC Adv. 2014, 4, 35597–35608.CrossRefGoogle Scholar
  24. 24.
    Hu, D.; Lu, B.; Zhang, K.; Sun, X.; Xu, J.; Duan, X.; Dong, L.; Sun, H.; Zhu, X.; Zhen, S. Synthesis of novel chiral Lphenylalanine grafted PEDOT derivatives with electrochemical chiral sensor for 3,4-dihydroxyphenylalanine discrimination. Int. J. Electrochem. Sci. 2015, 10, 3065–3081.Google Scholar
  25. 25.
    Zong, K.; Madrigal, L.; Groenendaal, L. B.; Reynolds, J. R. 3,4-Alkylenedioxy ring formation via double Mitsunobu reactions: An efficient route for the synthesis of 3,4-ethylenedioxythiophene (EDOT) and 3,4-propylenedioxythiophene (ProDOT) derivatives as monomers for electron-rich conducting polymers. Chem. Commun. 2002, 2498–2499.Google Scholar
  26. 26.
    Kumar, A.; Kumar, A. Single step reductive polymerization of functional 3,4-propylenedioxythiophenes via direct C?H arylation catalyzed by palladium acetate. Polym. Chem. 2010, 1, 286–288.CrossRefGoogle Scholar
  27. 27.
    Lu, B.; Lu, Y.; Wen, Y.; Duan, X.; Xu, J.; Chen, S.; Zhang, L. Synthesis, characterization, and vitamin C detection of a novel L-Alanine-modified PEDOT with enhanced chirality. Int. J. Electrochem. Sci. 2013, 8, 2826–2841.Google Scholar
  28. 28.
    Niu, J.; Chen, S.; Zhang, W.; Zhang, W.; Chai, K.; Ye, G.; Li, D.; Zhou, W.; Duan, X.; Xu, J. Supercapacitor properties of nanowire poly((3,4-dihydro-2H-thieno[3,4-b][1,4] dioxepin-3-yl)methanol) free-supporting films. Electrochim. Acta 2018, 283, 488–496.CrossRefGoogle Scholar
  29. 29.
    Lu, B.; Zhang, S.; Qin, L.; Chen, S.; Zhen, S.; Xu, J. Electrosynthesis of poly(3,4-ethylenedithiathiophene) in an ionic liquid and its electrochemistry and electrochromic properties. Electrochim. Acta 2013, 106, 201–208.CrossRefGoogle Scholar
  30. 30.
    Lu, Y.; Wen, Y. P.; Lu, B. Y.; Duan, X. M.; Xu, J. K.; Zhang, L.; Huang, Y. Electrosynthesis and characterization of poly(hydroxy-methylated-3,4-ethylenedioxythiophene) film in aqueous micellar solution and its biosensing application. Chinese J. Polym. Sci. 2012, 30, 824–836.CrossRefGoogle Scholar
  31. 31.
    Lu, B.; Zhen, S.; Zhang, S.; Xu, J.; Zhao, G. Highly stable hybrid selenophene-3,4-ethylenedioxythiophene as electrically conducting and electrochromic polymers. Polym. Chem. 2014, 5, 4896–4908.CrossRefGoogle Scholar
  32. 32.
    Anson, F. C. Application of potentiostatic current integration to the study of the adsorption of cobalt(III)-(ethylenedinitrilo) tetraacetate on mercury electrodes. Anal. Chem. 1964, 36, 932–934.CrossRefGoogle Scholar
  33. 33.
    Yao, Y.; Zhang, L.; Wen, Y.; Wang, Z.; Zhang, H.; Hu, D.; Xu, J.; Duan, X. Voltammetric determination of catechin using single-walled carbon nanotubes/poly(hydroxymethylated-3,4-ethylenedioxythiophene) composite modified electrode. Ionics 2015, 21, 2927–2936.CrossRefGoogle Scholar
  34. 34.
    Laviron, E. Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J. Electroanal. Chem. 1974, 52, 355–393.CrossRefGoogle Scholar
  35. 35.
    Velasco, J. G. Determination of standard rate constants for electrochemical irreversible processes from linear sweep voltammograms. Electroanalysis 1997, 9, 880–882.CrossRefGoogle Scholar
  36. 36.
    Chen, L.; Chang, F.; Meng, L.; Li, M.; Zhu, Z. A novel electrochemical chiral sensor for 3,4-dihydroxyphenylalanine based on the combination of single-walled carbon nanotubes, sulfuric acid and square wave voltammetry. Analyst 2014, 139, 2243–2248.CrossRefGoogle Scholar

Copyright information

© Chinese Chemical Society, Institute of Chemistry (CAS) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of PharmacyJiangxi Science & Technology Normal UniversityNanchangChina
  2. 2.School of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdaoChina

Personalised recommendations