Skip to main content
Log in

Brownian Dynamics Simulations of Rigid Polyelectrolyte Chains Grafting to Spherical Colloid

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Brownian dynamics simulations are employed to explore the effects of chain stiffness and trivalent salt concentration on the conformational behavior of spherical polyelectrolyte brush. The rigid brush adopts bundle-like morphology at a wide range of trivalent salt concentration. The number variation of bundles pinned on the colloid surface shows a non-monotonic profile as a function of the chain stiffness. The radial distributions of monomers and ions and the charge ratio between condensed ions and monomers are calculated. The charge inversion is observed for the high salt concentration regardless of chain rigidity. Furthermore, the pair correlation functions of monomer-monomer and monomer-salt cation are used to elucidate the aggregated mechanism of the bundle-like structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pincus, P. Colloid stabilization with grafted polyelectrolyte brushes. Macromolecules 1991, 24(10), 2912–2919.

    Article  CAS  Google Scholar 

  2. Kreer, T. Polymer-brush lubrication: a review of recent theoretical advances. Soft Matter 2016, 12(15), 3479–3501.

    Article  CAS  PubMed  Google Scholar 

  3. Li, B.; Yu, B.; Wang, X. L.; Guo, F.; Zhou, F. Correlation between conformation change of polyelectrolyte brushes and lubrication. Chinese J. Polym. Sci. 2015, 33(1), 163–172.

    Article  CAS  Google Scholar 

  4. Motornov, M.; Tam, T. K.; Pita, M.; Tokarev, I.; Katz, E.; Minko, S. Switchable selectivity for gating ion transport with mixed polyelectrolyte brushes: approaching ‘smart’ drug delivery systems. Nanotechnology 2009, 20(43), DOI: 10.1088/0957-4484/20/43/434006

    Google Scholar 

  5. Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Muller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M.; Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9(2), 101–113.

    Article  CAS  PubMed  Google Scholar 

  6. Binder, K.; Milchev, A. Polymer brushes on flat and curved surfaces: How computer simulations can help to test theories and to interpret experiments. J. Polym. Sci., Part B: Polym. Phys. 2012, 50(50), 1515–1555.

    Article  CAS  Google Scholar 

  7. Das, S.; Banik, M.; Chen, G.; Sinhaa, S.; Mukherjeeb, R. Polyelectrolyte brushes: theory, modelling, synthesis and applications. Soft Matter 2015, 11(44), 8550–8583.

    Article  CAS  PubMed  Google Scholar 

  8. Yu, X.; Wang, W.; Li, L.; Guo, X.; Zhou, Z.; Wang, F. Analysis of spherical polyelectrolyte brushes by small angle X-ray scattering. Chinese J. Polym. Sci. 2014, 32(6), 778–785.

    Article  CAS  Google Scholar 

  9. Willott, J. D.; Murdoch, T. J.; Webber, G. B.; Wanless, E. J. Physicochemical behaviour of cationic polyelectrolyte brushes. Prog. Polym. Sci. 2017, 64, 52–75.

    Article  CAS  Google Scholar 

  10. Guenoun, P.; Muller, F.; Delsanti, M.; Auvray, L.; Chen, Y. J.; Mays, J. W.; Tirrell, M. Rodlike behavior of polyelectrolyte brushes. Phys. Rev. Lett. 1998, 81(18), 3872–3875.

    Article  CAS  Google Scholar 

  11. Shen, G.; Tercero, N.; Gaspar, M. A.; Varughese, B.; Shepard, K.; Levicky, R. Charging behavior of single-stranded DNA polyelectrolyte brushes. J. Am. Chem. Soc. 2006, 128(26), 8427–8433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kegler, K.; Salomo, M.; Kremer, F. Forces of interaction between DNA-grafted colloids: an optical tweezer measurement. Phys. Rev. Lett. 2007, 98(5), 058304.

    Article  CAS  PubMed  Google Scholar 

  13. Fazli, H.; Golestanian, R.; Hansen, P. L., Kolahchi, M. R. Rod-like polyelectrolyte brushes with mono and multivalent counterions. Europhys. Lett. 2006, 73(3), 429–435.

    Article  CAS  Google Scholar 

  14. Likos, C. N.; Blaak, R.; Wynveen, A. Computer simulations of polyelectrolyte stars and brushes. J. Phys.: Condens. Matter 2008, 20(49), 494221.

    Google Scholar 

  15. Wynveen, A.; Likos, C. N. Interactions between planar stiff polyelectrolyte brushes. Phys. Rev. E 2009, 80(1), DOI: 10.1103/PhysRevE.80.010801

    Google Scholar 

  16. Wynveen, A.; Likos, C. N. Interactions between planar polyelectrolyte brushes: effects of stiffness and salt. Soft Matter 2010, 6(1), 163–171.

    Article  CAS  Google Scholar 

  17. Cao, Q. Q.; Zuo, C. C.; Li, L. J. Molecular dynamics simulations of end-grafted centipede-like polymers with stiff charged side chains. Eur. Phys. J. E 2010, 32(1), 1–12.

    Article  CAS  PubMed  Google Scholar 

  18. Cao, Q. Q.; Zuo, C. C.; Li, L. J.; Yan, G. Effects of chain stiffness and salt concentration on responses of polyelectrolyte brushes under external electric field. Biomicrofluidics 2011, 5(4), DOI: 10.1063/1.3672190

    Google Scholar 

  19. Cao, Q. Q.; You, H. Polyampholyte brushes grafted on the surface of a spherical cavity: effect of the charged monomer sequence, grafting density, and chain stiffness. Langmuir 2015, 31(23), 6375–6384.

    Article  CAS  PubMed  Google Scholar 

  20. Lieleg, O.; Schmoller, K. M.; Cyron, C. J.; Luan, Y.; Wall, W. A.; Bausch, A. R. Structural polymorphism in heterogeneous cytoskeletal networks. Soft Matter 2009, 5(9), 1796–1803.

    Article  CAS  Google Scholar 

  21. Wang, Z.; Sheetz, M. P. The C-terminus of tubulin increases cytoplasmic dynein and kinesin processivity. Biophys. J. 2000, 78(4), 1955–1964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fazli, H.; Mohammadinejad, S., Golestanian, R. Salt-induced aggregation of stiff polyelectrolytes. J. Phys.: Condens. Matter 2009, 21(42), DOI: 10.1088/0953-8984/21/42/424111

    Google Scholar 

  23. Sayar, M.; Holm, C. Equilibrium polyelectrolyte bundles with different multivalent counterion concentrations. Phys. Rev. E 2010, 82(3), DOI: 10.1103/PhysRevE.82.031901

    Google Scholar 

  24. Tom, A. M.; Rajesh, R.; Vemparala, S. Aggregation dynamics of rigid polyelectrolytes. J. Chem. Phys. 2016, 144(3), DOI: 10.1063/1.4939870

    Google Scholar 

  25. Li, Y.; Jiang, T.; Wang, L.; Lin, S.; Lin J. Self-assembly of rod-coil-rod triblock copolymers: a route toward hierarchical liquid crystalline structures. Polymer 2016, 103, 64–72.

    Article  CAS  Google Scholar 

  26. Li, Y.; Jiang, T.; Lin, S.; Lin, J.; Cai, C.; Zhu, X. Hierarchical nanostructures self-assembled from a mixture system containing rod-coil block copolymers and rigid homopolymers. Sci. Rep. 2015, 5, DOI: 10.1038/srep10137

    Google Scholar 

  27. Guan, Z.; Wang, L.; Lin, J. Interaction pathways between plasma membrane and block copolymer micelles. Biomacromolecules 2017, 18(3), 797–807.

    Article  CAS  PubMed  Google Scholar 

  28. Kremer, K.; Grest, G. S. Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J. Chem. Phys. 1990, 92(8), 5057–5086.

    Article  CAS  Google Scholar 

  29. Yeh, I. C.; Berkowitz, M. L. Ewald summation for systems with slab geometry. J. Chem. Phys. 1999, 111(7), 3155–3162.

    Article  CAS  Google Scholar 

  30. Plimpton, S. J. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117(1), 1–19.

    Article  CAS  Google Scholar 

  31. Pathria, R. in "Statistical mechanics", 2nd ed. 2006, Elsevier, Singapore: Pte Ltd.

    Google Scholar 

  32. Varghese, A.; Rajesh, R.; Vemparala, S. Aggregation of rod-like polyelectrolyte chains in the presence of monovalent counterions. J. Chem. Phys. 2012, 137(23), DOI: 10.1063/1.4771920

    Google Scholar 

  33. Günther, J. U.; Ahrens, H.; Förster, S.; Helm, C. A. Bundle formation in polyelectrolyte brushes. Phys. Rev. Lett. 2008, 101(25), DOI: 10.1103/PhysRevLett.101.258303

    Google Scholar 

  34. Guptha, V. S.; Hsiao, P. Y. Polyelectrolyte brushes in monovalent and multivalent salt solutions. Polymer 2014, 55(12), 2900–2912.

    Article  CAS  Google Scholar 

  35. Liu, L., Pincus, P. A.; Hyeon, C. Heterogenous morphology and dynamics of polyelectrolyte brush condensates in trivalent counterion solution. Macromolecules 2017, 50(4), 1579–1588.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21474005) and the Fundamental Research Funds for the Central Universities (No. 3122016L011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing-Hai Hao or Hong-Ge Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, QH., Zheng, Z., Xia, G. et al. Brownian Dynamics Simulations of Rigid Polyelectrolyte Chains Grafting to Spherical Colloid. Chin J Polym Sci 36, 791–798 (2018). https://doi.org/10.1007/s10118-018-2042-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2042-x

Keywords

Navigation