Skip to main content
Log in

Coarse-grained simulations of polyelectrolyte brushes using a hybrid model

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We investigate the structure of polyelectrolyte brushes to determine the effects of the charge fraction of the polymers, grafting density, chain length, and salt concentration. A hybrid coarse-grained model is employed, where a soft potential is applied to coarse-grained particles representing the solvent, while a hard potential is used for the polymer beads, and co- and counterions. A steep increase in brush height with charge fraction is observed in the low-to-moderate charge fraction regime, whereas the brush approaches the contour height in the high charge fraction regime. The effects of graft density and chain length on brush height are well explained by the scaling theory based on the balance between the osmotic pressure and chain elasticity, properly taking into account the polymer stiffness. In addition, Pincus’s power law for varying added salt concentration is also reproduced by the simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Das S, Banik M, Chen G, Sinha S, Mukherjee R (2015) Soft Matter 11:8550

    Article  CAS  Google Scholar 

  2. Raviv U, Giasson S, Kampf N, Gohy J-F, Jérôme R, Klein J (2003) Nature 425:163

    Article  CAS  Google Scholar 

  3. Kreer T (2016) Soft Matter 12:3479

    Article  CAS  Google Scholar 

  4. Ahrens H, Foster S, Helm CA, Kumr NA, Naji A, Natz RR, Seidel C (2004) J Phys Chem B 108:16870

    Article  CAS  Google Scholar 

  5. Seki H, Suzuki YY, Orland H (2007) J Phys Soc Jpn 76:104601

    Article  Google Scholar 

  6. Taniguchi T (2009) J Phys Soc Jpn 78:041009

    Article  Google Scholar 

  7. Washizu H, Kinjo T, Yoshida H (2014) Friction 2:73

    Article  CAS  Google Scholar 

  8. Miklavic SJ, Marčelja S (1988) J Chem Phys 92:6718

    Article  CAS  Google Scholar 

  9. Ibergay C, Malfreyt P, Tildesley DJ (2010) J Phys Chem 114:7274

    Article  CAS  Google Scholar 

  10. Pincus P (1991) Macromolecules 24:2912

    Article  CAS  Google Scholar 

  11. Csajka FS, Seidel C (2000) Mocromolecules 33:2728

    Article  CAS  Google Scholar 

  12. Seidel C (2003) Mocromolecules 36:2536

    Article  CAS  Google Scholar 

  13. Naji A, Netz RR, Seidel C (2003) Eur Phys J E 12:223

    Article  CAS  Google Scholar 

  14. Kinjo T, Hyodo S (2007) Phys Rev E 75:051109

    Article  Google Scholar 

  15. Groot RD, Warren PB (1997) J Phys Chem 107:4423

    Article  CAS  Google Scholar 

  16. Klapp SHL, Diestler DJ, Schoen M (2004) J Phys Condens Matter 16:7331

    Article  CAS  Google Scholar 

  17. Kinjo T, Hyodo S (2007) Mol Sim 33:417

    Article  CAS  Google Scholar 

  18. http://lammps.sandia.gov/ for the code

  19. Yeh I-C, Berkowitz ML (1999) J Chem Phys 111:3155

    Article  CAS  Google Scholar 

  20. Manning GS (1969) J Chem Phys 51:924

    Article  CAS  Google Scholar 

  21. Naji A, Seidel C, Netz RR (2006) Adv Polym Sci 198:149

    Article  CAS  Google Scholar 

  22. Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, Oxford

    Google Scholar 

  23. Storobl GR (2007) The physics of polymer. Springer, Heidelberg

    Google Scholar 

  24. Dan N, Tirrell M (1993) Macromolecules 26:4310

    Article  CAS  Google Scholar 

  25. Hariharan R, Viber C, Mays J, Russel WB (1998) Macromolecules 31:7506

    Article  CAS  Google Scholar 

  26. Kumar NA, Seidel C (2005) Macromolecules 38:9341

    Article  CAS  Google Scholar 

  27. Sing CE, Zwanikken JW, de la Cruz MO (2013) Macromolecules 46:5053

    Article  CAS  Google Scholar 

  28. Perry SL, Sing CE (2015) Macromolecules 48:5040

    Article  CAS  Google Scholar 

  29. Mima T, Yasuoka K (2008) Phys Rev E 77:011705

    Article  Google Scholar 

  30. Sharma S, Wookcock LV (1991) J Chem Soc Faraday Trans 87:2023

    Article  Google Scholar 

  31. Philippova OE, Sitnikova NL, Demidovich GB, Khokhlov AR (1996) Macromolecules 29

  32. Khokhlov AR, Kramarenko EY (1996) Macromolecules 29:681

    Article  CAS  Google Scholar 

Download references

Funding

No specific funds/grants were received from any funding bodies to carry out the work described in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Kinjo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinjo, T., Yoshida, H. & Washizu, H. Coarse-grained simulations of polyelectrolyte brushes using a hybrid model. Colloid Polym Sci 296, 441–449 (2018). https://doi.org/10.1007/s00396-017-4258-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4258-7

Keywords

Navigation