Skip to main content

Advertisement

Log in

Interacting environmental and chemical stresses under global change in temperate aquatic ecosystems: stress responses, adaptation, and scaling

  • Review Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Unfavorable environmental conditions—abiotic stress—constitute one of the key drivers of evolution leading to environmental adaptation. Since the start of industrial revolution, natural populations are also facing a new stress—global warming—that, in turn, leads to alteration of the severity of most of the existing stress factors and emergence of novel stress combinations. Biological adaptation to environmental perturbations occurs at all levels of biological organization, but the current knowledge on the role of adaptation in responses of ecosystems to global change is limited, especially concerning the interplay of climatic and chemical/pollutant stressors. Particularly limited is the understanding of how biological adaptation alters the performance of aquatic ecosystems that integrate the pollution and nutrient loads from large catchment areas. This review describes the responses, tolerance, acclimation, and adaptation of species at different levels of aquatic food chain to globally changing environmental drivers with emphasis on arctic to temperate ecosystems. The analysis highlights major variations in tolerance and in extent and speed of acclimation and adaptation to various environmental drivers within and among species and among species groups at different trophic levels. The variety of responses to novel stressors causes modifications in species composition and diversity and can lead to asynchronous peak activities of organisms at different trophic levels. All these effects are expected to profoundly alter the aquatic ecosystem productivity, resilience, and adaptation capacity and can ultimately modify the global feedbacks between ecosystem-level processes and environmental drivers. We argue that joint efforts of researchers working at different levels of biological organization are needed to understand and predict global change effects on various functional types of organisms and scale up from physiological responses to large-scale integrated ecosystem responses in future climates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdulaziz A, Sageer S, Chekidhenkuzhiyil J, Vijayan V, Pavanan P, Athiyanathil S, Nair S (2016) Unicellular cyanobacteria Synechocystis accommodate heterotrophic bacteria with varied enzymatic and metal resistance properties. J Basic Microbiol 56:845–856. doi:10.1002/jobm.201500693

    Article  CAS  Google Scholar 

  • Adrian R, Wilhelm S, Gerten D (2006) Life-history traits of lake plankton species may govern their phenological response to climate warming. Glob Chang Biol 12:652–661. doi:10.1111/j.1365-2486.2006.01125.x

    Article  Google Scholar 

  • Alcaraz M, Felipe J, Grote U, Arashkevich E, Nikishina A (2014) Life in a warming ocean: thermal thresholds and metabolic balance of arctic zooplankton. J Plankton Res 36:3–10. doi:10.1093/plankt/fbt111

    Article  Google Scholar 

  • Alsterberg C, Sundbäck K (2013) Experimental warming and toxicant exposure can result in antagonistic effects in a shallow-water sediment system. Mar Ecol - Prog Ser 488:89–101. doi:10.3354/meps10357

    Article  CAS  Google Scholar 

  • Aruoja V, Pokhrel S, Sihtmäe M, Mortimer M, Mädler L, Kahru A (2015) Toxicity of 12 metal based nanoparticles to algae, bacteria and protozoa. Environ Sci : Nano 2:630–644. doi:10.1039/C5EN00057B

    CAS  Google Scholar 

  • Battaglia LL, Sharitz RR (2006) Responses of floodplain forest species to spatially condensed gradients: a test of the flood–shade tolerance tradeoff hypothesis. Oecologia 147:108–118. doi:10.1007/s00442-005-0245-7

    Article  CAS  Google Scholar 

  • Bell G, Collins S (2008) Adaptation, extinction and global change. Evol Appl 1:3–16. doi:10.1111/j.1752-4571.2007.00011.x

    Article  Google Scholar 

  • Blinova I, Kanarbik L, Sihtmäe M, Kahru A (2016) Toxicity of water accommodated fractions of Estonian shale fuel oils to aquatic organisms. Arch Environ Contam Toxicol 70:383–391. doi:10.1007/s00244-015-0242-8

    Article  CAS  Google Scholar 

  • Boudou A, Ribeyre F (1997) Mercury in the food web: accumulation and transfer mechanisms. Met Ions Biol Syst 34:289–319

    CAS  Google Scholar 

  • Braun M, Foissner I, Lühring H, Schubert H, Thiel G (2007) Characean algae: still a valid model system to examine fundamental principles in plants. Prog Bot 69:193–220. doi:10.1007/978-3-540-36832-8_9

    Article  Google Scholar 

  • Bruneaux M, Nikinmaa M, Laine VN, Lindström K, Primmer CR, Vasemägi A (2014) Differences in the metabolic response to temperature acclimation in nine-spined stickleback (Pungitius pungitius) populations from contrasting thermal environments. J Exp Zool A Ecol Genet Physiol 10:550–565. doi:10.1002/jez.1889

    Article  Google Scholar 

  • Bruneaux M, Visse M, Gross R, Pukk L, Saks L, Vasemägi A (2017) Parasite infection and decreased thermal tolerance: impact of proliferative kidney disease on a wild salmonid fish in the context of climate change. Funct Ecol 31:216–226. doi:10.1111/1365-2435.12701

    Article  Google Scholar 

  • Carey CC, Ibelings BW, Hoffmann EP, Hamilton DP, Brookes JD (2012) Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res 46:1394–1407. doi:10.1016/j.watres.2011.12.016

    Article  CAS  Google Scholar 

  • Carraro E, Guyennon N, Hamilton D, Valsecchi L, Manfredi EC, Viviano G, Salerno F, Tartari G, Copetti D (2012) Coupling high-resolution measurements to a three-dimensional lake model to assess the spatial and temporal dynamics of the cyanobacterium Planktothrix rubescens in a medium-sized lake. Hydrobiologia 698:77–95. doi:10.1007/s10750-012-1096-y

    Article  CAS  Google Scholar 

  • Clark TD, Sandblom E, Jutfelt F (2013) Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. J Exp Biol 216:2771–2782. doi:10.1242/jeb.084251

    Article  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184. doi:10.1007/s10021-006-9013-8

    Article  CAS  Google Scholar 

  • Coors A, Hammers-Wirtz M, Ratte HT (2004) Adaptation to environmental stress in Daphnia magna simultaneously exposed to a xenobiotic. Chemosphere 56:395–404. doi:10.1016/j.chemosphere.2004.04.025

    Article  CAS  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2014) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163. doi:10.1186/1471-2229-11-163

    Article  Google Scholar 

  • Crozier LG, Hutchings JA (2014) Plastic and evolutionary responses to climate change in fish. Evol Appl 7:68–87. doi:10.1111/eva.12135

    Article  Google Scholar 

  • Dam HG (2013) Evolutionary adaptation of marine zooplankton to global change. Annu Rev Mar Sci 5:349–370. doi:10.1146/annurev-marine-121211-172229

    Article  Google Scholar 

  • Debes PV, Gross R, Vasemägi A (2017) Quantitative genetic variation in, and environmental effects on, pathogen resistance and temperature-dependent disease severity in a wild trout. Am Nat xx (in press). doi:10.1086/692536

  • Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884. doi:10.1038/nature02808

    Article  CAS  Google Scholar 

  • Eliason EJ, Clark TD, Hague MJ, Hanson LM, Gallagher ZS, Jeffries KM, Gale MK, Patterson DA, Hinch SG, Farrell AP (2011) Differences in thermal tolerance among sockeye salmon populations. Science 332:109–112. doi:10.1126/science.1199158

    Article  CAS  Google Scholar 

  • Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B (eds) (2014) Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Freedman B (1989) Environmental ecology. The impacts of pollution and other stresses on ecosystem structure and function. Academic Press, Inc., San Diego

    Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257. doi:10.1091/mbc.11.12.4241

    Article  CAS  Google Scholar 

  • Gaur JP, Rai LC (2001) Heavy metal tolerance in algae. In: Rai LC, Gaur JP (eds) Algal adaptation to environmental stresses, vol 55. Springer Verlag, Berlin, pp 363–388. doi:10.1007/978-3-642-59491-5_12

    Chapter  Google Scholar 

  • Ger KA, Hansson L-A, Lürling M (2014) Understanding cyanobacteria-zooplankton interactions in a more eutrophic world. Freshw Biol 59:1783–1798. doi:10.1111/fwb.12393

    Article  Google Scholar 

  • Grenouillet G, Comte L (2014) Illuminating geographical patterns in species’ range shifts. Glob Chang Biol 20:3080–3091. doi:10.1111/gcb.12570

    Article  Google Scholar 

  • Hakalahti T, Karvonen A, Valtonen ET (2006) Climate warming and disease risks in temperate regions – Argulus coregoni and Diplostomum spathaceum as case studies. J Helminthol 80:93–98. doi:10.1079/JOH2006351

    Article  CAS  Google Scholar 

  • Hanazato T (2001) Pesticide effects on freshwater zooplankton: an ecological perspective. Environ Pollut 112:1–10. doi:10.1016/S0269-7491(00)00110-X

    Article  CAS  Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162. doi:10.1126/science.1063699

    Article  CAS  Google Scholar 

  • Heckmann LH, Sibly RM, Connon R, Hooper HL, Hutchinson TH, Maund SJ, Hill CJ, Bouetard A, Callaghan A (2008) Systems biology meets stress ecology: linking molecular and organismal stress responses in Daphnia magna. Genome Biol 9:R40. doi:10.1186/gb-2008-9-2-r40

    Article  CAS  Google Scholar 

  • Hein CL, Öhlund G, Englund G (2014) Fish introductions reveal the temperature dependence of species interactions. Proc R Soc Lond B - Biol Sci 281:20132641. doi:10.1098/rspb.2013.2641

    Article  Google Scholar 

  • Hilt S, Wanke T, Scharnweber K, Brauns M, Syväranta J, Brothers S, Gaedke U, Köhler J, Lischke B, Mehner T (2015) Contrasting response of two shallow eutrophic cold temperate lakes to a partial winterkill of fish. Hydrobiologia 749:31–42. doi:10.1007/s10750-014-2143-7

    Article  CAS  Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation. Oxford University Press, Oxford

    Google Scholar 

  • Holdren JP (2008) Science and technology for sustainable well-being. Science 319:424–434. doi:10.1126/science.1153386

    Article  CAS  Google Scholar 

  • Hooper MJ, Ankley GT, Cristol DA, Maryoung LA, Noyes PD, Pinkerton KE (2013) Interactions between chemical and climate stressors: a role for mechanistic toxicology in assessing climate change risks. Environ Toxicol Chem 32:32–48. doi:10.1002/etc.2043

    Article  CAS  Google Scholar 

  • Huertas IE, Rouco M, López-Rodas V, Costas E (2011) Warming will affect phytoplankton differently: evidence through a mechanistic approach. Proc R Soc Lond B 278:3534–3543. doi:10.1098/rspb.2011.0160

    Article  Google Scholar 

  • Huising MO, Metz JR, de Mazon AF, Verburg-van Kemenade BML, Flika G (2005) Regulation of the stress response in early vertebrates. Ann N Y Acad Sci 1040:345–347. doi:10.1196/annals.1327.057

    Article  CAS  Google Scholar 

  • Huttunen JT, Alm J, Saarijärvi E, Lappalainen KM, Silvola J, Martikainen PJ (2003) Contribution of winter to the annual CH4 emission from a eutrophied boreal lake. Chemosphere 50:247–250. doi:10.1016/S0045-6535(02)00148-0

    Article  CAS  Google Scholar 

  • Ipatova V, Prokhotskaya V, Dmitrieva A (2012) Structural changes and adaptation of algal population under different regimens of toxic exposure. In: Minai AA, Braha D, Bar-Yam Y (eds) Unifying themes in complex systems VII. Proceedings of the Seventh International Conference on Complex Systems, vol 55. Springer Verlag, Berlin, pp 149–156. doi:10.1007/978-3-642-18003-3_15

  • Jeppesen E, Meerhoff M, Holmgren K, González-Bergonzoni I, Teixeira-de Mello F, Declerck SAJ, De Meester L, Søndergaard M, Lauridsen TL, Bjerring R, Conde-Porcuna JM, Mazzeo N, Iglesias C, Reizenstein M, Malmquist HJ, Liu Z, Balayla D, Lazzaro X (2010) Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia 646:73–90. doi:10.1007/s10750-010-0171-5

    Article  CAS  Google Scholar 

  • Ji R, Edwards M, Mackas DL, Runge JA, Thomas AC (2010) Marine plankton phenology and life history in a changing climate: current research and future directions. J Plankton Res 32:1355–1368. doi:10.1007/s10750-010-0171-5

    Article  Google Scholar 

  • Jin HS, Egashira S, Chau KW (1998) Carbon to chlorophyll-a ratio in modeling long-term eutrophication phenomena. Water Sci Technol 38:227–235. doi:10.1016/S0273-1223(98)00659-3

    CAS  Google Scholar 

  • Jonsson A, Karlsson J, Jansson M (2003) Sources of carbon dioxide supersaturation in clearwater and humic lakes in northern Sweden. Ecosystems 6:224–235. doi:10.1007/s10021-002-0200-y

    Article  CAS  Google Scholar 

  • Ju Z, Wells MC, Walter RB (2007) DNA microarray technology in toxicogenomics of aquatic models: methods and applications. Comp Biochem Physiol C 145:5–14. doi:10.1016/j.cbpc.2006.04.017

    Google Scholar 

  • Karlsson J, Byström P, Ask J, Ask P, Persson L, Jansson M (2009) Light limitation of nutrient-poor lake ecosystems. Nature 460:506–510. doi:10.1038/nature08179

    Article  CAS  Google Scholar 

  • Karvonen A, Rintamäki P, Jokela J, Valtonen ET (2010) Increasing water temperature and disease risks in aquatic systems: climate change increases the risk of some, but not all, diseases. Int J Parasitol 40:1483–1488. doi:10.1016/j.ijpara.2010.04.015

    Article  Google Scholar 

  • Kattge J, Knorr W (2007) Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant Cell Environ 30:1176–1190. doi:10.1111/j.1365-3040.2007.01690.x

    Article  CAS  Google Scholar 

  • Kennedy CJ, Walsh PJ (1997) Effects of temperature on xenobiotic metabolism. In: Wood CM, McDonald DG (eds) Global warming: implications for freshwater and marine fish. Cambridge University Press, Cambridge, pp 303–324

    Chapter  Google Scholar 

  • Kimberly DA, Salice CJ (2014) Complex interactions between climate change and toxicants: evidence that temperature variability increases sensitivity to cadmium. Ecotoxicology 23:809–817. doi:10.1007/s10646-014-1221-y

    Article  CAS  Google Scholar 

  • Knauer K, Leimgruber A, Hommen U, Knauert S (2010) Co-tolerance of phytoplankton communities to photosynthesis II inhibitors. Aquat Toxicol 96:256–263. doi:10.1016/j.aquatox.2009.11.001

    Article  CAS  Google Scholar 

  • Knillmann S, Stampfli NC, Noskov YA, Beketov MA, Liess M (2013) Elevated temperature prolongs long-term effects of a pesticide on Daphnia spp. due to altered competition in zooplankton communities. Glob Chang Biol 19:1598–1609. doi:10.1111/gcb.12151

    Article  Google Scholar 

  • Kosek K, Polkowska Ż, Żyszka B, Lipok J (2016) Phytoplankton communities of polar regions—diversity depending on environmental conditions and chemical anthropopressure. J Environ Manag 171:243–259. doi:10.1016/j.jenvman.2016.01.026

    Article  CAS  Google Scholar 

  • Kosten S, Huszar VLM, Bécares E, Costa LS, van Donk E, Hansson L-A, Jeppesen E, Kruk C, Lacerot G, Mazzeo N, De Meester L, Moss B, Lürling M, Nõges T, Romo S, Scheffer M (2012) Warmer climates boost cyanobacterial dominance in shallow lakes. Glob Chang Biol 18:118–126. doi:10.1111/j.1365-2486.2011.02488.x

    Article  Google Scholar 

  • Kreitsberg R, Baršienė J, Freiberg R, Andreikėnaitė L, Tammaru T, Rumvolt K, Tuvikene A (2013) Biomarkers of effects of hypoxia and oil-shale contaminated sediments in laboratory-exposed gibel carp (Carassius auratus gibelio). Ecotoxicol Environ Saf 98:227–235. doi:10.1016/j.ecoenv.2013.08.016

    Article  CAS  Google Scholar 

  • Kuhlanek S, Leung B, Ricciardi A (2011) Using ecological niche models to predict the abundance and impact of invasive species: application to the common carp. Ecol Appl 21:203–213. doi:10.1890/09-1639.1

    Article  Google Scholar 

  • Laanisto L, Niinemets Ü (2015) Polytolerance to abiotic stresses: how universal is the shade-drought tolerance trade-off in woody species? Glob Ecol Biogeogr 24:571–580. doi:10.1111/geb.12288

    Article  Google Scholar 

  • Lettieri T (2006) Recent applications of DNA microarray technology to toxicology and ecotoxicology. Environ Health Perspect 114:4–9. doi:10.1289/ehp.8194

    CAS  Google Scholar 

  • Li ZH, Li P, Chen L (2014) Temperature affects Hg-induced antioxidant responses in Chinese rare minnow Gobiocypris rarus larvae in vitro. Bull Environ Contam Toxicol 93:666–669. doi:10.1007/s00128-014-1399-y

    Article  CAS  Google Scholar 

  • Lischke B, Weithoff G, Wickham SA, Attermeyer K, Grossart H-P, Scharnweber K, Hilt S, Gaedke U (2016) Large biomass of small feeders: ciliates may dominate herbivory in eutrophic lakes. J Plankton Res 38:2–15. doi:10.1093/plankt/fbv102

    Article  Google Scholar 

  • Longhi ML, Beisner BE (2009) Environmental factors controlling the vertical distribution of phytoplankton in lakes. J Plankton Res 31:1195–1207. doi:10.1093/plankt/fbp065

    Article  CAS  Google Scholar 

  • López-Rodas V, Flores-Moya A, Maneiro E, Perdigones N, Marva F, García ME, Costas E (2007) Resistance to glyphosate in the cyanobacterium Microcystis aeruginosa as result of pre-selective mutations. Evol Ecol 21:535–547. doi:10.1007/s10682-006-9134-8

    Article  Google Scholar 

  • Los DA, Suzuki I, Zinchenko VV, Murata N (2008) Stress responses in Synechocystis: regulated genes and regulatory systems. In: Herrero A, Flores E (eds) The cyanobacteria: molecular biology, genomics and evolution, vol 314. Casiter Academic Press, Norfolk, pp 117–158

    Google Scholar 

  • Madeira D, Narciso L, Cabral HN, Vinagre C (2012) Thermal tolerance and potential impacts of climate change on coastal and estuarine organisms. J Sea Res 70:32–41. doi:10.1016/j.seares.2012.03.002

    Article  Google Scholar 

  • Marcogliese DJ (2008) The impact of climate change on the parasites and infectious diseases of aquatic animals. Rev Sci Tech 27:467–484

    Article  CAS  Google Scholar 

  • Marcos-López M, Gale P, Oidtmann BC, Peeler EJ (2010) Assessing the impact of climate change on disease emergence in freshwater fish in the United Kingdom. Transbound Emerg Dis 57:293–304. doi:10.1111/j.1865-1682.2010.01150.x

    Article  Google Scholar 

  • Markensten H, Moore K, Persson I (2010) Simulated lake phytoplankton composition shifts toward cyanobacteria dominance in a future warmer climate. Ecol Appl 20:752–767. doi:10.1890/08-2109.1

    Article  Google Scholar 

  • McBrien TL, Anttila K, Healy TM, Schulte PM (2013) Responses to temperature and hypoxia as interacting stressors in fish: implications for adaptation to environmental change. Integr Comp Biol 53:648–659. doi:10.1093/icb/ict066

    Article  Google Scholar 

  • Merilä J, Hendry AP (2014) Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol Appl 7:1–14. doi:10.1111/eva.12137

    Article  Google Scholar 

  • Merilä J, Sheldon BC, Kruuk LE (2001) Explaining stasis: microevolutionary studies in natural populations. Genetica 112-113:199–222. doi:10.1023/A:1013391806317

    Article  Google Scholar 

  • Mitsch WJ, Bernal B, Nahlik AM, Mander Ü, Zhang L, Anderson L, Jørgensen SE, Brix H (2013) Wetlands, carbon, and climate change. Landsc Ecol 28:583–597. doi:10.1007/s10980-012-9758-8

    Article  Google Scholar 

  • Mo HH, Yoo D, Bae YJ, Cho K (2013) Effects of water temperature on development and heavy metal toxicity change in two midge species of Chironomus riparius and C. yoshimatsui in an era of rapid climate change. Entomol Res 43:123–129. doi:10.1111/1748-5967.12014

    Article  CAS  Google Scholar 

  • Moe SJ, De Schamphelaere K, Clements WH, Sorensen MT, Van den Brink PJ, Liess M (2013) Combined and interactive effects of global climate change and toxicants on populations and communities. Environ Toxicol Chem 32:49–61. doi:10.1002/ETC.2045

    Article  CAS  Google Scholar 

  • Mohammed A (2013) Why are early life stages of aquatic organisms more sensitive to toxicants than adults? In: Gowder S (ed) New insights into toxicity and drug testing. InTech, pp 49–62. doi: 10.5772/55187

  • Muñoz NJ, Farrell AP, Heath JW, Neff BD (2015) Adaptive potential of a Pacific salmon challenged by climate change. Nat Clim Chang 5:163–166. doi:10.1038/nclimate2473

    Article  Google Scholar 

  • Nedelcu A (2006) Evidence for p53-like-mediated stress responses in green algae. FEBS Lett 580:3013–3017. doi:10.1016/j.febslet.2006.04.044

    Article  CAS  Google Scholar 

  • Niinemets Ü (2010) Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. For Ecol Manag 260:1623–1639. doi:10.1016/j.foreco.2010.07.054

    Article  Google Scholar 

  • Niinemets Ü, Valladares F (2008) Environmental tolerance. In: Jørgensen SE, Fath BD (eds) Encyclopedia of Ecology, vol 2. Elsevier, Oxford, pp 1370–1376. doi:10.1016/B978-008045405-4.00826-0

    Chapter  Google Scholar 

  • Niinemets Ü, Kahru A, Nõges P, Tuvikene A, Vasemägi A, Mander Ü, Nõges T (2017) Environmental feedbacks in temperate aquatic ecosystems under global change: why do we need to consider chemical stressors? Reg Environ Chang xx (In Press). doi:10.1007/S10113-017-1197-2

  • Occhipinti-Ambrogi A, Savini D (2003) Biological invasions as a component of global change in stressed marine ecosystems. Mar Pollut Bull 46:542–551. doi:10.1016/S0025-326X(02)00363-6

    Article  CAS  Google Scholar 

  • van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment. Environ Toxicol Pharmacol 13:57–149. doi:10.1016/S1382-6689(02)00126-6

    Article  Google Scholar 

  • Osundeko O, Dean AP, Davies H, Pittman JK (2014) Acclimation of microalgae to wastewater environments involves increased oxidative stress tolerance activity. Plant Cell Physiol 55:1848–1857. doi:10.1093/pcp/pcu113

    Article  CAS  Google Scholar 

  • Paerl HW, Huisman J (2008) Blooms like it hot. Science 320:57–58. doi:10.1126/science.1155398

    Article  CAS  Google Scholar 

  • Pal A, Gin KYH, Lin AYC, Reinhard M (2010) Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Sci Total Environ 40:6062–6069. doi:10.1016/j.scitotenv.2010.09.026

    Article  CAS  Google Scholar 

  • Parks JM, Johs A, Podar M, Bridou R, Hurt RA Jr, Smith SD, Tomanicek SJ, Qian Y, Brown SD, Brandt CC, Palumbo AV, Smith JC, Wall JD, Elias DA, Liang L (2013) The genetic basis for bacterial mercury methylation. Science 339:1332–1335. doi:10.1126/science.1230667

    Article  CAS  Google Scholar 

  • Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97. doi:10.1126/science.1135471

    Article  CAS  Google Scholar 

  • Pörtner HO, Peck MA (2010) Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J Fish Biol 77:1745–1779. doi:10.1111/j.1095-8649.2010.02783.x

    Article  Google Scholar 

  • Posthuma L, de Zwart D (2006) Predicted effects of toxicant mixtures are confirmed by changes in fish species assemblages in Ohio, USA, rivers. Environ Toxicol 25:1094–1105. doi:10.1897/05-305R.1

    Article  CAS  Google Scholar 

  • Poulin R (2006) Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology 132:143–151. doi:10.1017/S0031182005008693

    Article  CAS  Google Scholar 

  • Rabalais NN, Diaz RJ, Levin LA, Turner RE, Gilbert D, Zang J (2010) Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7:585–619. doi:10.5194/bg-7-585-2010

    Article  CAS  Google Scholar 

  • Rahel FJ, Olden JD (2008) Assessing the effects of climate change on aquatic invasive species. Conserv Biol 22:521–533. doi:10.1111/j.1523-1739.2008.00950.x

    Article  Google Scholar 

  • Rahman MS, Thomas P (2012) Effects of hypoxia exposure on hepatic cytochrome P450 1A (CYP1A) expression in Atlantic croaker: molecular mechanisms of CYP1A down-regulation. PLoS One 7:e40825. doi:10.1371/journal.pone.0040825

    Article  CAS  Google Scholar 

  • Richardson AJ (2008) In hot water: zooplankton and climate change. ICES J Mar Sci 65:279–295. doi:10.1093/icesjms/fsn028

    Article  Google Scholar 

  • Rijnsdorp AD, Peck MA, Engelhard GH, Möllmann C, Pinnegar JK (2009) Resolving the effect of climate change on fish populations. ICES J Mar Sci 66:1570–1583. doi:10.1093/icesjms/fsp056

    Article  Google Scholar 

  • Ruuhijärvi J, Rask M, Vesala S, Lehtovaara A (2010) Recovery of the fish community and changes in the lower trophic levels in a eutrophic lake after a winter kill of fish. Hydrobiologia 646:145–158. doi:10.1007/s10750-010-0186-y

    Article  CAS  Google Scholar 

  • Sánchez-Fortún S, Marvá F, Rouco M, Costas E, López-Rodas V (2009) Toxic effect and adaptation in Scenedesmus intermedius to anthropogenic chloramphenicol contamination: genetic versus physiological mechanisms to rapid acquisition of xenobiotic resistance. Ecotoxicology 18:481–487. doi:10.1007/s10646-009-0303-8

    Article  CAS  Google Scholar 

  • Sarnelle O, Wilson AE (2005) Local adaptation of Daphnia pulicaria to toxic cyanobacteria. Limnol Oceanogr 5:1565–1570. doi:10.4319/lo.2005.50.5.1565

    Article  Google Scholar 

  • Schmitt-Jansen M, Altenburger R (2005) Predicting and observing responses of algal communities to photosystem II-herbicide exposure using pollution-induced community tolerance and species-sensitivity distributions. Environ Toxicol Chem 24:304–312. doi:10.1897/03-647.1

    Article  CAS  Google Scholar 

  • Schrader SM, Kleinbeck KR, Sharkey TD (2007) Rapid heating of intact leaves reveals initial effects of stromal oxidation on photosynthesis. Plant Cell Environ 30:671–678. doi:10.1111/j.1365-3040.2007.01657.x

    Article  CAS  Google Scholar 

  • Seebacher F, Brand MD, Else P, Guderley H, Hulbert AJ, Moyes CD (2010) Plasticity of oxidative metabolism in variable climates: molecular mechanisms. Physiol Biochem Zool 83:721–732. doi:10.1086/649964

    Article  CAS  Google Scholar 

  • Seebacher F, Holmes S, Roosen NJ, Nouvian M, Wilson RS, Ward AJW (2012) Capacity for thermal acclimation differs between populations and phylogenetic lineages within a species. Funct Ecol 26:1418–1428. doi:10.1111/j.1365-2435.2012.02052.x

    Article  Google Scholar 

  • Seebens H, Einsle U, Straile D (2009) Copepod life cycle adaptations and success in response to phytoplankton spring bloom phenology. Glob Chang Biol 15:1394–1404. doi:10.1111/j.1365-2486.2008.01806.x

    Article  Google Scholar 

  • Shatwell T, Köhler J, Nicklisch A (2008) Warming promotes cold-adapted phytoplankton in temperate lakes and opens a loophole for Oscillatoriales in spring. Glob Chang Biol 14:2194–2200. doi:10.1111/j.1365-2486.2008.01630.x

    Article  Google Scholar 

  • Shimada T, Jones R, Limpus C, Groom R, Hamann M (2016) Long-term and seasonal patterns of sea turtle home ranges in warm coastal foraging habitats: implications for conservation. Mar Ecol Prog Ser 562:163–179. doi:10.3354/meps11972

    Article  Google Scholar 

  • Sokolova IM, Lanning G (2008) Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: implications of global climate change. Clim Res 37:181–201. doi:10.3354/cr00764

    Article  Google Scholar 

  • Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J Exp Biol 213:912–920. doi:10.1242/jeb.037473

    Article  CAS  Google Scholar 

  • van Straalen NM, Timmermans MJTN (2002) Genetic variation in toxicant-stressed populations: an evaluation of the “genetic erosion” hypothesis. Hum Ecol Risk Assess : Int J 8:983–1002. doi:10.1080/1080-700291905783

    Article  Google Scholar 

  • Strand JA, Weisner SEB (2001) Morphological plastic responses to water depth and wave exposure in an aquatic plant (Myriophyllum spicatum). J Ecol 89:166–175. doi:10.1046/j.1365-2745.2001.00530.x

    Article  Google Scholar 

  • Thomas MK, Kremer CT, Klausmeier CA, Litchman E (2012) A global pattern of thermal adaptation in marine phytoplankton. Science 338:1085–1088. doi:10.1126/science.1224836

    Article  CAS  Google Scholar 

  • Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser TL, Larsen S, Laurion I, Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, von Wachenfeldt E, Weyhenmeyer G (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314. doi:10.4319/lo.2009.54.6_part_2.2298

    Article  CAS  Google Scholar 

  • Vaal M, van der Wal JT, Hermens J, Hoekstra J (1997a) Pattern analysis of the variation in the sensitivity of aquatic species to toxicants. Chemosphere 35:1291–1309. doi:10.1016/S0045-6535(97)00166-5

  • Vaal M, van der Wal JT, Hoekstra J, Hermens J (1997b) Variation in the sensitivity of aquatic species in relation to the classification of environmental pollutants. Chemosphere 35:1311–1327. doi:10.1016/S0045-6535(97)00167-7

  • Valladares F, Pearcy RW (1997) Interactions between water stress, sun-shade acclimation, heat tolerance and photoinhibition in the sclerophyll Heteromeles arbutifolia. Plant Cell Environ 20:25–36. doi:10.1046/j.1365-3040.1997.d01-8.x

    Article  Google Scholar 

  • Varshney P, Mikulic P, Vonshak A, Beardall J, Wangikar PP (2015) Extremophilic micro-algae and their potential contribution in biotechnology. Bioresour Technol 56:363–372. doi:10.1016/j.biotech.2014.11.040

    Article  CAS  Google Scholar 

  • Vinebrooke RD, Cottingham KL, Norberg J, Scheffer M, Dodson SI, Maberly SC, Sommer U (2004) Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos 104:451–457. doi:10.1111/j.0030-1299.2004.13255.x

    Article  Google Scholar 

  • Vonlanthen P, Bittner D, Hudson AG, Young KA, Mueller R, Lundsgaard-Hansen B, Roy D, Di Piazza S, Largiader CR, Seehausen O (2012) Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482:357–362. doi:10.1038/nature10824

    Article  CAS  Google Scholar 

  • Way DA, Oren R (2010) Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiol 30:669–688. doi:10.1093/treephys/tpq015

    Article  Google Scholar 

  • Wenger SJ, Olden JD (2012) Assessing transferability of ecological models: an underappreciated aspect of statistical validation. Methods Ecol Evol 3:260–267. doi:10.1111/j.2041-210X.2011.00170.x

    Article  Google Scholar 

  • Williams JW, Jackson ST (2007) Novel climates, no-analog communities, and ecological surprises. Front Ecol Environ 5:475–482. doi:10.1890/070037

    Article  Google Scholar 

  • Winder M, Schindler DE (2004) Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85:2100–2106. doi:10.1890/04-0151

    Article  Google Scholar 

  • Yampolsky LY, Schaer TMM, Ebert D (2014) Adaptive phenotypic plasticity and local adaptation for temperature tolerance in freshwater zooplankton. Proc R Soc Lond B 281:20132744. doi:10.1098/rspb.2013.2744

    Article  Google Scholar 

  • Yang R, Brauner C, Thurston V, Neuman J, Randall DJ (2000a) Relationship between toxicant transfer kinetic processes and fish oxygen consumption. Aquat Toxicol 2-3:95–108. doi:10.1016/S0166-445X(99)00050-8

    Article  Google Scholar 

  • Yang R, Thurston V, Neuman J, Randall DJ (2000b) A physiological model to predict xenobiotic concentration in fish. Aquat Toxicol 2-3:109–117. doi:10.1016/S0166-445X(99)00049-1

    Article  Google Scholar 

  • Zhao H-J, Tan J-F (2005) Role of calcium ion in protection against heat and high irradiance stress-induced oxidative damage to photosynthesis of wheat leaves. Photosynthetica 43:473–476. doi:10.1007/s11099-005-0076-0

    Article  CAS  Google Scholar 

  • Zimmerman RC, Kohrs DG, Steller DL, Alberte RS (1997) Impacts of CO2 enrichment on productivity and light requirements of eelgrass. Plant Physiol 115:599–607. doi:10.1104/pp.115.2.599

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Preparation of this review has been partly funded by the Estonian Research Council (institutional grants IUT 2-16, IUT 8-3, IUT 8-2, IUT 21-2, and IUT 23-5), Academy of Finland, and the European Commission through the European Regional Development Fund (Centers of Excellence ENVIRON and EcolChange, TK 131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ülo Niinemets.

Electronic supplementary material

ESM 1

(DOC 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niinemets, Ü., Kahru, A., Mander, Ü. et al. Interacting environmental and chemical stresses under global change in temperate aquatic ecosystems: stress responses, adaptation, and scaling. Reg Environ Change 17, 2061–2077 (2017). https://doi.org/10.1007/s10113-017-1196-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-017-1196-3

Keywords

Navigation