Skip to main content

Advertisement

Log in

Low-level laser treatment promotes skin wound healing by activating hair follicle stem cells in female mice

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of the study was to explore the effect and mechanism of a low-level laser on hair follicle stem cells in full-thickness skin wound healing in mice. Full-thickness skin defects were generated by a 5-mm punch biopsy tool on the backs of depilated C57/BL6N mice, which were randomly divided thereafter into a low-dose laser treatment group (LLLT-Low), a high-dose laser treatment group (LLLT-High), and a control group (control). From the day of modeling to the day before the skin samples were taken, the wound area and wound edge of the mice in the LLLT-Low and LLLT-High groups were irradiated with a laser comb every 24 h, and the energy density was 1 J/cm2 and 10 J/cm2, respectively. The control group was irradiated with an ordinary fluorescent lamp. At 0, 3, 5, 10, and 14 days after modeling, pictures of each wound were taken, and the percent wound closure was analyzed. At 3, 5, 10, and 14 days after modeling, the samples were observed by hematoxylin and eosin (HE) and immunofluorescence (IF) staining. Whole transcriptome sequencing (RNA-Seq) was performed on the samples on day 10. Gene Ontology (GO) analysis was performed, and the results were validated by Western blot analysis and enzyme-linked immunosorbent assay (ELISA). The analysis of the percent of wound closure showed that healing was accelerated (significantly from 5 to 10 days) in the LLLT-Low group, but there was no clear change in the LLLT-High group. HE staining showed that the LLLT-Low group had an increasing number of hair follicles and a tendency to migrate to the center of the wound. There was no significant increase in the number of hair follicles and no obvious migration in the LLLT-High group. Immunofluorescence staining showed that the total number of CK15 + hair follicle stem cells in the LLLT-Low group was higher than that in the control group and LLLT-High group at all time points. The number and farthest migration distance of CK15 + hair follicle stem cells increased significantly with time, and after 5 days, they were significantly higher than those in the control group and LLLT-High group. RNA-Seq and Western blot analysis showed that the expression of related genes in hair follicle stem cells, including CK15, in the LLLT-Low group was upregulated. GO analysis and ELISA showed that the expression of many cytokines, represented by IL34, in the LLLT-Low group was upregulated. Low-level laser treatment can promote the proliferation, differentiation, and migration of CK15 + hair follicle stem cells by upregulating the cytokine IL34, thereby promoting skin wound healing in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boyko TV, Longaker MT, Yang GP (2017) Laboratory models for the study of normal and pathologic wound healing. Plast Reconstr Surg 139:654–662. https://doi.org/10.1097/PRS.0000000000003077

    Article  CAS  PubMed  Google Scholar 

  2. Jensen KB, Collins CA, Nascimento E, Tan DW, Frye M, Itami S et al (2009) Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 4:427–439. https://doi.org/10.1016/j.stem.2009.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aragona M, Dekoninck S, Rulands S, Lenglez S, Mascre G, Simons BD et al (2017) Defining stem cell dynamics and migration during wound healing in mouse skin epidermis. Nat Commun 8:14684. https://doi.org/10.1038/ncomms14684

    Article  PubMed  PubMed Central  Google Scholar 

  4. Donati G, Rognoni E, Hiratsuka T, Liakath-Ali K, Hoste E, Kar G et al (2017) Wounding induces dedifferentiation of epidermal Gata6(+) cells and acquisition of stem cell properties. Nat Cell Biol 19:603–613. https://doi.org/10.1038/ncb3532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lu CP, Polak L, Rocha AS, Pasolli HA, Chen SC, Sharma N et al (2012) Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair. Cell 150:136–150. https://doi.org/10.1016/j.cell.2012.04.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dompe C, Moncrieff L, Matys J, Grzech-Lesniak K, Kocherova I, Bryja A et al (2020) Photobiomodulation-underlying mechanism and clinical applications. J Clin Med 9. https://doi.org/10.3390/jcm9061724

  7. Zhang T, Liu L, Fan J, Tian J, Gan C, Yang Z et al (2017) Low-level laser treatment stimulates hair growth via upregulating Wnt10b and beta-catenin expression in C3H/HeJ mice. Lasers Med Sci 32:1189–1195. https://doi.org/10.1007/s10103-017-2224-8

    Article  PubMed  Google Scholar 

  8. Torres AE, Lim HW (2021) Photobiomodulation for the management of hair loss. Photodermatol Photoimmunol Photomed 37:91–98. https://doi.org/10.1111/phpp.12649

    Article  PubMed  Google Scholar 

  9. Avci P, Gupta GK, Clark J, Wikonkal N, Hamblin MR (2014) Low-level laser (light) therapy (LLLT) for treatment of hair loss. Lasers Surg Med 46:144–151. https://doi.org/10.1002/lsm.22170

    Article  PubMed  Google Scholar 

  10. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321. https://doi.org/10.1038/nature07039

    Article  CAS  PubMed  Google Scholar 

  11. Figurova M, Ledecky V, Karasova M, Hluchy M, Trbolova A, Capik I et al (2016) Histological assessment of a combined low-level laser/light-emitting diode therapy (685 nm/470 nm) for sutured skin incisions in a porcine model: a short report. Photomed Laser Surg 34:53–55. https://doi.org/10.1089/pho.2015.4013

    Article  PubMed  Google Scholar 

  12. Li Y, Zhang J, Xu Y, Han Y, Jiang B, Huang L et al (2016) The histopathological investigation of red and blue light emitting diode on treating skin wounds in Japanese big-ear white rabbit. PLoS ONE 11:e0157898. https://doi.org/10.1371/journal.pone.0157898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tripodi N, Corcoran D, Antonello P, Balic N, Caddy D, Knight A et al (2021) The effects of photobiomodulation on human dermal fibroblasts in vitro: a systematic review. J Photochem Photobiol B 214:112100. https://doi.org/10.1016/j.jphotobiol.2020.112100

    Article  CAS  PubMed  Google Scholar 

  14. Guo Y, Qu Q, Chen J, Miao Y, Hu Z (2020) Proposed mechanisms of low-level light therapy in the treatment of androgenetic alopecia. Lasers Med Sci. https://doi.org/10.1007/s10103-020-03159-z

    Article  PubMed  Google Scholar 

  15. Hwang I, Choi KA, Park HS, Jeong H, Kim JO, Seol KC et al (2016) Neural stem cells restore hair growth through activation of the hair follicle niche. Cell Transplant 25:1439–1451. https://doi.org/10.3727/096368916X691466

    Article  PubMed  Google Scholar 

  16. Brownell I, Guevara E, Bai CB, Loomis CA, Joyner AL (2011) Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell Stem Cell 8:552–565. https://doi.org/10.1016/j.stem.2011.02.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ et al (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11:1351–1354. https://doi.org/10.1038/nm1328

    Article  CAS  PubMed  Google Scholar 

  18. Rompolas P, Mesa KR, Greco V (2013) Spatial organization within a niche as a determinant of stem-cell fate. Nature 502:513–518. https://doi.org/10.1038/nature12602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hoeck JD, Biehs B, Kurtova AV, Kljavin NM, De Sousa EMF, Alicke B et al (2017) Stem cell plasticity enables hair regeneration following Lgr5(+) cell loss. Nat Cell Biol 19:666–676. https://doi.org/10.1038/ncb3535

    Article  CAS  PubMed  Google Scholar 

  20. Langton AK, Herrick SE, Headon DJ (2008) An extended epidermal response heals cutaneous wounds in the absence of a hair follicle stem cell contribution. J Invest Dermatol 128:1311–1318. https://doi.org/10.1038/sj.jid.5701178

    Article  CAS  PubMed  Google Scholar 

  21. Nowak JA, Polak L, Pasolli HA, Fuchs E (2008) Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell 3:33–43. https://doi.org/10.1016/j.stem.2008.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fujiwara H, Ferreira M, Donati G, Marciano DK, Linton JM, Sato Y et al (2011) The basement membrane of hair follicle stem cells is a muscle cell niche. Cell 144:577–589. https://doi.org/10.1016/j.cell.2011.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu S, Zhou F, Wei Y, Chen WR, Chen Q, Xing D (2014) Cancer phototherapy via selective photoinactivation of respiratory chain oxidase to trigger a fatal superoxide anion burst. Antioxid Redox Signal 20:733–746. https://doi.org/10.1089/ars.2013.5229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang WZ, Chen JY, Yu JT, Zhou LW (2007) Effects of low power laser irradiation on intracellular calcium and histamine release in RBL-2H3 mast cells. Photochem Photobiol 83:979–984. https://doi.org/10.1111/j.1751-1097.2007.00116.x

    Article  CAS  PubMed  Google Scholar 

  25. Albert ES, Bec JM, Desmadryl G, Chekroud K, Travo C, Gaboyard S et al (2012) TRPV4 channels mediate the infrared laser-evoked response in sensory neurons. J Neurophysiol 107:3227–3234. https://doi.org/10.1152/jn.00424.2011

    Article  CAS  PubMed  Google Scholar 

  26. De Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22. https://doi.org/10.1109/JSTQE.2016.2561201

  27. Liao X, Xie GH, Liu HW, Cheng B, Li SH, Xie S et al (2014) Helium-neon laser irradiation promotes the proliferation and migration of human epidermal stem cells in vitro: proposed mechanism for enhanced wound re-epithelialization. Photomed Laser Surg 32:219–225. https://doi.org/10.1089/pho.2013.3667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fernandes AP, JunqueiraMde A, Marques NC, Machado MA, Santos CF, Oliveira TM et al (2016) Effects of low-level laser therapy on stem cells from human exfoliated deciduous teeth. J Appl Oral Sci 24:332–337. https://doi.org/10.1590/1678-775720150275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang YY, Chen AC, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose Response 7:358–383. https://doi.org/10.2203/dose-response.09-027.Hamblin

    Article  PubMed  PubMed Central  Google Scholar 

  30. Huang YY, Sharma SK, Carroll J, Hamblin MR (2011) Biphasic dose response in low level light therapy - an update. Dose Response 9:602–618. https://doi.org/10.2203/dose-response.11-009.Hamblin

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baghdadi M, Umeyama Y, Hama N, Kobayashi T, Han N, Wada H et al (2018) Interleukin-34, a comprehensive review. J Leukoc Biol 104:931–951. https://doi.org/10.1002/JLB.MR1117-457R

    Article  CAS  PubMed  Google Scholar 

  32. Guillonneau C, Bezie S, Anegon I (2017) Immunoregulatory properties of the cytokine IL-34. Cell Mol Life Sci 74:2569–2586. https://doi.org/10.1007/s00018-017-2482-4

    Article  CAS  PubMed  Google Scholar 

  33. Baghdadi M, Endo H, Tanaka Y, Wada H, Seino KI (2017) Interleukin 34, from pathogenesis to clinical applications. Cytokine 99:139–147. https://doi.org/10.1016/j.cyto.2017.08.020

    Article  CAS  PubMed  Google Scholar 

  34. Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C, Cella M et al (2012) IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol 13:753–760. https://doi.org/10.1038/ni.2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nagao K, Kobayashi T, Moro K, Ohyama M, Adachi T, Kitashima DY et al (2012) Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat Immunol 13:744–752. https://doi.org/10.1038/ni.2353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Masson-Meyers DS, TaM A, Caetano GF, Guimaraes FR, Leite MN, Leite SN et al (2020) Experimental models and methods for cutaneous wound healing assessment. Int J Exp Pathol 101:21–37. https://doi.org/10.1111/iep.12346

    Article  PubMed  PubMed Central  Google Scholar 

  37. Davidson JM, Yu F, Opalenik SR (2013) Splinting strategies to overcome confounding wound contraction in experimental animal models. Adv Wound Care (New Rochelle) 2:142–148. https://doi.org/10.1089/wound.2012.0424

    Article  Google Scholar 

  38. Wang X, Ge J, Tredget EE, Wu Y (2013) The mouse excisional wound splinting model, including applications for stem cell transplantation. Nat Protoc 8:302–309. https://doi.org/10.1038/nprot.2013.002

    Article  CAS  PubMed  Google Scholar 

  39. Agha R, Ogawa R, Pietramaggiori G, Orgill DP (2011) A review of the role of mechanical forces in cutaneous wound healing. J Surg Res 171:700–708. https://doi.org/10.1016/j.jss.2011.07.007

    Article  PubMed  Google Scholar 

  40. Chen L, Mirza R, Kwon Y, Dipietro LA, Koh TJ (2015) The murine excisional wound model: contraction revisited. Wound Repair Regen 23:874–877. https://doi.org/10.1111/wrr.12338

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zomer HD, Trentin AG (2018) Skin wound healing in humans and mice: challenges in translational research. J Dermatol Sci 90:3–12. https://doi.org/10.1016/j.jdermsci.2017.12.009

    Article  PubMed  Google Scholar 

  42. Chu GY, Chen YF, Chen HY, Chan MH, Gau CS, Weng SM (2018) Stem cell therapy on skin: mechanisms, recent advances and drug reviewing issues. J Food Drug Anal 26:14–20. https://doi.org/10.1016/j.jfda.2017.10.004

    Article  CAS  PubMed  Google Scholar 

  43. Kim KH, Pierce MC, Maguluri G, Park BH, Yoon SJ, Lydon M et al (2012) In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography. J Biomed Opt 17:066012. https://doi.org/10.1117/1.JBO.17.6.066012

    Article  PubMed  Google Scholar 

  44. Deegan AJ, Wang W, Men S, Li Y, Song S, Xu J et al (2018) Optical coherence tomography angiography monitors human cutaneous wound healing over time. Quant Imaging Med Surg 8: 135–150. https://doi.org/10.21037/qims.2018.02.07

  45. Lu J, Deegan AJ, Cheng Y, Liu T, Zheng Y, Mandell SP et al (2021) Application of OCT-derived attenuation coefficient in acute burn-damaged skin. Lasers Surg Med. https://doi.org/10.1002/lsm.23415

    Article  PubMed  Google Scholar 

  46. Fan Y, Ma Q, Xin S, Peng R, Kang H (2021) Quantitative and qualitative evaluation of supercontinuum laser-induced cutaneous thermal injuries and their repair with OCT images. Lasers Surg Med 53:252–262. https://doi.org/10.1002/lsm.23287

    Article  Google Scholar 

  47. Rodrigues M, Kosaric N, Bonham CA, Gurtner GC (2019) Wound healing: a cellular perspective. Physiol Rev 99:665–706. https://doi.org/10.1152/physrev.00067.2017

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqiang Liu.

Ethics declarations

Ethics approval

All procedures performed in this study involving animals were approved by the Animal Care and Use Committee of the Chinese Academy of Medical Sciences (No. 2020200).

Conflict of interest

The authors declare no competing interests.

Role of funding resources

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Liu, L., Fan, J. et al. Low-level laser treatment promotes skin wound healing by activating hair follicle stem cells in female mice. Lasers Med Sci 37, 1699–1707 (2022). https://doi.org/10.1007/s10103-021-03419-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-021-03419-6

Keywords

Navigation