Skip to main content

Advertisement

Log in

Proposed mechanisms of low-level light therapy in the treatment of androgenetic alopecia

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Androgenetic alopecia (AGA) is a global challenge, affecting a large number of people worldwide. Efficacy of the existed treatments can barely meet the demands of patients. Patients who are poorly responding to those treatments are seeking for a more effective and suitable technique to treat their disease. Low-level light therapy (LLLT) is a newly developed technique, which has been proved to stimulate hair growth. Based on the function principle of LLLT in other domains and refer to the published literatures, we write this review to neaten and elucidate the possible mechanism of LLLT in the treatment of AGA. A review of published literature which is associated with keywords LLLT, photobiomodulation, AGA, treatment, hair growth, and mechanism was performed to elucidate the proposed mechanism of LLLT in the treatment of AGA. The present study shows that LLLT can accelerate hair growth in AGA patients. The proposed mechanism of LLLT in treating AGA may vary among different specialists. But we can summarize the consensual mechanisms as follows; low-level light absorbed by chromophores can lead to the production of nitric oxide (NO) and the modulation of reactive oxygen species (ROS). These mobilized molecules subsequently activate redox-related signaling pathways in hair follicle cells and perifollicular cells. Finally, these activated cells participate in the regrowth of hair follicle. Even though the efficacy of LLLT in the treatment of AGA in both men and women has already been confirmed, the present studies focusing on discovering LLLT are still inadequate and unsystematic. More studies are needed to standardize the optimum treatment parameters applied in promoting hair growth and determine the long-term safety and efficacy of LLLT. Current recognitions about the mechanisms of LLLT, mainly focused on the molecules that may take effect, neglected different cellular components that are functional in the hair follicle macro-environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Not applicable

Abbreviations

AGA:

Androgenetic alopecia

LLLT:

Low-level-light therapy

NO:

Nitric oxide

ROS:

Reactive oxygen species

FDA:

Food and Drug Administration

PBM:

Photobiomodulation

PRP:

Platelet-rich plasma

Cco:

Cytochrome oxidase

MPHL:

Male pattern hair loss

FPHL:

Female pattern hair loss

NASA:

National Aeronautics and Space Administration

IGA:

Investigators’ global assessment

DP:

Dermal papilla

NIR:

Near-infrared

ORSC:

Outer root sheath cell

ECM:

Extracellular matrix

DWAT:

Dermal white adipose tissue

hADSCs:

Human adipose-derived stem cells

VEGF:

Vascular endothelial growth factor

HGF:

Hepatocyte growth factor

FGF-2:

Fibroblast growth factor-2

IL-1β:

Interleukin 1β

TNF-α:

Tumor necrosis factor-alpha

PGE-2:

Prostaglandin E2

LTB-4:

Leukotriene B-4

Th1:

T helper cells type 1

AA:

Alopecia areata

HIF-1α:

Hypoxia-inducible factor 1α

MMP-2:

Matrix metalloproteinase 2

HUVECs:

Human umbilical vascular endothelial cell

HECV:

Human endothelial cells

References

  1. Stefano T, Francesca S, di Cristina P, Mannooranparampil Thomas J, Marcella R, Damiano A (2013) Health status, coping strategies, and alexithymia in subjects with androgenetic alopecia: a questionnaire study. Am J Clin Dermatol 14:139–145. https://doi.org/10.1007/s40257-013-0010-3

    Article  Google Scholar 

  2. Whiting DA (2001) Possible mechanisms of miniaturization during androgenetic alopecia or pattern hair loss. J Am Acad Dermatol 45:S81–S86. https://doi.org/10.1067/mjd.2001.117428

    Article  CAS  PubMed  Google Scholar 

  3. Fang L, Yong M, Xingdong L, Qian Q, Yang L, Kaitao L, Chuanbo F, Hu Z (2018) The relationship between self-esteem and hair transplantation satisfaction in male androgenetic alopecia patients. J Cosmet Dermatol undefined: undefined. https://doi.org/10.1111/jocd.12839

  4. Katherine Y, Nekma M, Bevin B, Rodney S (2020) A review of the treatment of male pattern hair loss. Expert Opin Pharmacother 21:603–612. https://doi.org/10.1080/14656566.2020.1721463

    Article  CAS  Google Scholar 

  5. Bater KL, Masaru I, Andrew J, Peiyi S, Jason N, Ishii LE (2016) Perception of hair transplant for androgenetic alopecia. JAMA Facial Plast Surg 18:413–418. https://doi.org/10.1001/jamafacial.2016.0546

    Article  PubMed  PubMed Central  Google Scholar 

  6. Venkataram M, Shashikumar BM (2016) Guidelines on the use of finasteride in androgenetic alopecia. Indian J Dermatol Venereol Leprol 82:128–134. https://doi.org/10.4103/0378-6323.177432

    Article  Google Scholar 

  7. Poonkiat S, Sasima T, Kanchana L (2019) Minoxidil and its use in hair disorders: a review. Drug Des Devel Ther 13:2777–2786. https://doi.org/10.2147/DDDT.S214907

    Article  Google Scholar 

  8. Pietro G, Simone G (2020) Systematic review of platelet-rich plasma use in androgenetic alopecia compared with minoxidil, finasteride, and adult stem cell-based therapy. Int J Mol Sci 21:undefined. https://doi.org/10.3390/ijms21082702

    Article  CAS  Google Scholar 

  9. Wickenheisser VA, Marta ZE, Mary RE, Ho LH, Lawrence DS, Kathleen TT (2019) Laser light therapy in inflammatory, musculoskeletal, and autoimmune disease. Curr Allergy Asthma Rep 19:37. https://doi.org/10.1007/s11882-019-0869-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cotler HB (2015) A NASA discovery has current applications in orthopaedics. Curr Orthop Pract 26:72–74. https://doi.org/10.1097/BCO.0000000000000196

    Article  PubMed  Google Scholar 

  11. Avram MR, Rogers NE (2009) The use of low-level light for hair growth: part I. J Cosmet Laser Ther 11:110–117. https://doi.org/10.1080/14764170902842531

    Article  PubMed  Google Scholar 

  12. Matt L, Glenn C, Eugene H, David M (2009) HairMax LaserComb laser phototherapy device in the treatment of male androgenetic alopecia: a randomized, double-blind, sham device-controlled, multicentre trial. Clin Drug Investig 29:283–292. https://doi.org/10.2165/00044011-200929050-00001

    Article  Google Scholar 

  13. Hyojin K, Woong CJ, Young KJ, Won SJ, Lee S-J, Chang-Hun H (2013) Low-level light therapy for androgenetic alopecia: a 24-week, randomized, double-blind, sham device-controlled multicenter trial. Dermatol Surg 39:1177–1183. https://doi.org/10.1111/dsu.12200

    Article  CAS  Google Scholar 

  14. Lanzafame RJ, Blanche RR, Bodian AB, Chiacchierini RP, Adolfo F-O, Kazmirek ER (2013) The growth of human scalp hair mediated by visible red light laser and LED sources in males. Lasers Surg Med 45:487–495. https://doi.org/10.1002/lsm.22173

    Article  PubMed  Google Scholar 

  15. Lanzafame RJ, Blanche RR, Chiacchierini RP, Kazmirek ER, Sklar JA (2014) The growth of human scalp hair in females using visible red light laser and LED sources. Lasers Surg Med 46:601–607. https://doi.org/10.1002/lsm.22277

    Article  PubMed  Google Scholar 

  16. Jimenez JJ, Wikramanayake TC, Wilma B, Maria H, Hickman JG, Hamblin MR, Schachner LA (2014) Efficacy and safety of a low-level laser device in the treatment of male and female pattern hair loss: a multicenter, randomized, sham device-controlled, double-blind study. Am J Clin Dermatol 15:115–127. https://doi.org/10.1007/s40257-013-0060-6

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shelly F, Patricia S (2017) Novel approach to treating androgenetic alopecia in females with photobiomodulation (low-level laser therapy). Dermatol Surg 43:856–867. https://doi.org/10.1097/DSS.0000000000001114

    Article  CAS  Google Scholar 

  18. Behrooz B, Zeinab K, Leila K, Reza AM, Majid HA, Mojgan H, Zahra R, Samaneh A (2017) Comparison of the effects of 665 nm low level diode Laser Hat versus and a combination of 665 nm and 808nm low level diode Laser Scanner of hair growth in androgenic alopecia. J Cosmet Laser Ther undefined:undefined. https://doi.org/10.1080/14764172.2017.1326609

  19. Sabrina M-YF, Cheng Y-P, Lee M-Y, Lin S-J, Hsien-Yi C (2018) Efficacy and safety of a low-level light therapy for androgenetic alopecia: a 24-week, randomized, double-blind, self-comparison, sham device-controlled trial. Dermatol Surg 44:1411–1420. https://doi.org/10.1097/DSS.0000000000001577

    Article  CAS  Google Scholar 

  20. Poonkiat S, Noppanun C, Saranya K (2019) Low-level laser therapy for the treatment of androgenetic alopecia in Thai men and women: a 24-week, randomized, double-blind, sham device-controlled trial. Lasers Med Sci 34:1107–1114. https://doi.org/10.1007/s10103-018-02699-9

    Article  Google Scholar 

  21. Yi Z, Chenglong C, Qian Q, Chunhua Z, Jin W, Zhexiang F, Yong M, Zhiqi H (2020) The effectiveness of combination therapies for androgenetic alopecia: a systematic review and meta-analysis. Dermatol Ther undefined:e13741. https://doi.org/10.1111/dth.13741

  22. Andrea A, Sara F, Stefano B (2019) Photobiomodulation affects key cellular pathways of all life-forms: considerations on old and new laser light targets and the calcium issue. Photochem Photobiol 95:455–459. https://doi.org/10.1111/php.13032

    Article  CAS  Google Scholar 

  23. Raquel MD, Luiza PN, Fernanda B, Farina AV, Henrique MM, Ferreira TC, Thiago D, Maia-Ribeiro EA, da Cruz IBM, Frescura DMMM (2020) Interaction between low-level laser therapy and Guarana (Paullinia cupana) extract induces antioxidant, anti-inflammatory, and anti-apoptotic effects and promotes proliferation in dermal fibroblasts. J Cosmet Dermatol 19:629–637. https://doi.org/10.1111/jocd.13055

    Article  Google Scholar 

  24. Hamblin MR (2018) Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol 94:199–212. https://doi.org/10.1111/php.12864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Manuela R, Mario M, Stelvio T, Vincenzo R, Filippo R (2018) Photobiomodulation induces in vitro re-epithelialization via nitric oxide production. Lasers Med Sci 33:1003–1008. https://doi.org/10.1007/s10103-018-2443-7

    Article  Google Scholar 

  26. Elisa C, Calvo MI, Alfonso B-C, Daniela V, Alicia Z, de Dias AIJ, Stockert Juan C, Hamblin Michael R, Ángeles J, Jesús E (2015) Photoactivation of ROS production in situ transiently activates cell proliferation in mouse skin and in the hair follicle stem cell niche promoting hair growth and wound healing. J Invest Dermatol 135:2611–2622. https://doi.org/10.1038/jid.2015.248

    Article  CAS  Google Scholar 

  27. Jesús T, Sruti S, Gladwin MT (2019) Sources of vascular nitric oxide and reactive oxygen species and their regulation. Physiol Rev 99:311–379. https://doi.org/10.1152/physrev.00036.2017

    Article  CAS  Google Scholar 

  28. Nameda Y, Miyoshi H, Tsuchiya K, Nakaya Y, Arase S (1996) Endotoxin-induced L-arginine pathway produces nitric oxide and modulates the Ca2+-activated K+ channel in cultured human dermal papilla cells. J Invest Dermatol 106:342–345. https://doi.org/10.1111/1523-1747.ep12343014

    Article  CAS  PubMed  Google Scholar 

  29. Shuang L, Xu F, Jing F, Shu L (2015) Protective roles of selenium on nitric oxide and the gene expression of inflammatory cytokines induced by cadmium in chicken splenic lymphocytes. Biol Trace Elem Res 168:252–260. https://doi.org/10.1007/s12011-015-0354-z

    Article  CAS  Google Scholar 

  30. Naoya I, Yuji H, Naoki M, Kazunori K, Hidehiko N (2014) Photomanipulation of vasodilation with a blue-light-controllable nitric oxide releaser. J Am Chem Soc 136:7085–7091. https://doi.org/10.1021/ja5020053

    Article  CAS  Google Scholar 

  31. Wang W, Lee Y, Lee CH (2015) Effects of nitric oxide on stem cell therapy. Biotechnol Adv 33:1685–1696. https://doi.org/10.1016/j.biotechadv.2015.09.004

    Article  CAS  PubMed  Google Scholar 

  32. Ronald W, Gilbert S, Martin P, Ulrike B-P (2003) Nitric oxide in the human hair follicle: constitutive and dihydrotestosterone-induced nitric oxide synthase expression and NO production in dermal papilla cells. J Mol Med 81:110–117. https://doi.org/10.1007/s00109-002-0402-y

    Article  CAS  Google Scholar 

  33. Zuo L, Zhou T, Pannell BK, Ziegler AC, Best TM (2015) Biological and physiological role of reactive oxygen species--the good, the bad and the ugly. Acta Physiol (Oxford) 214:329–348. https://doi.org/10.1111/apha.12515

    Article  CAS  Google Scholar 

  34. Siviero DC, Oliveira AL, Domingues MM, Helena SC, Moraes CR (2014) Laser phototherapy triggers the production of reactive oxygen species in oral epithelial cells without inducing DNA damage. J Biomed Opt 19:048002. https://doi.org/10.1117/1.JBO.19.4.048002

    Article  CAS  Google Scholar 

  35. Lemasters JJ, Ramshesh VK, Lovelace GL, John L, Wright GD, Duane H, Dawson TL (2017) Compartmentation of mitochondrial and oxidative metabolism in growing hair follicles: a ring of fire. J Invest Dermatol 137:1434–1444. https://doi.org/10.1016/j.jid.2017.02.983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Paredes AD, David B, Cheng J, Steve M, Rachana P, Michael D, Enrico B, Amelia B (2019) In Vivo the effect of fluence on macrophage kinetics, oxidative stress, and wound closure using real-time imaging. Photobiomodul Photomed Laser Surg 37:45–52. https://doi.org/10.1089/photob.2018.4494

    Article  CAS  PubMed  Google Scholar 

  37. de Mafra LF, Regiane A, Yvana D, Luis M-FA, de Loura SC, Caire C-F-NH, Cristiane F, Balbin VA, Flávio A (2013) Low-level laser therapy restores the oxidative stress balance in acute lung injury induced by gut ischemia and reperfusion. Photochem Photobiol 89:179–188. https://doi.org/10.1111/j.1751-1097.2012.01214.x

    Article  CAS  Google Scholar 

  38. Jack F, Patricia BS, Leonardo C, Malietzis CA, Kathleen M, Vasso A, Maja H, Dimitrios K (2018) Therapeutic applications of polarized light: tissue healing and immunomodulatory effects. Maturitas 116:11–17. https://doi.org/10.1016/j.maturitas.2018.07.009

    Article  CAS  Google Scholar 

  39. Tiran Z, Liqiang L, Jincai F, Jia T, Cheng G, Yang Z, Jiao H, Bing H, Zheng L (2017) Low-level laser treatment stimulates hair growth via upregulating Wnt10b and β-catenin expression in C3H/HeJ mice. Lasers Med Sci 32:1189–1195. https://doi.org/10.1007/s10103-017-2224-8

    Article  Google Scholar 

  40. Kim JE, Woo YJ, Sohn KM, Jeong KH, Hoon K (2017) Wnt/β-catenin and ERK pathway activation: a possible mechanism of photobiomodulation therapy with light-emitting diodes that regulate the proliferation of human outer root sheath cells. Lasers Surg Med 49:940–947. https://doi.org/10.1002/lsm.22736

    Article  PubMed  Google Scholar 

  41. Morgan BA (2014) The dermal papilla: an instructive niche for epithelial stem and progenitor cells in development and regeneration of the hair follicle. Cold Spring Harb Perspect Med 4:a015180. https://doi.org/10.1101/cshperspect.a015180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jin JH, Ho JK, Eun KJ, Hoon K (2017) Various wavelengths of light-emitting diode light regulate the proliferation of human dermal papilla cells and hair follicles via Wnt/β-Catenin and the extracellular signal-regulated kinase pathways. Ann Dermatol 29:747–754. https://doi.org/10.5021/ad.2017.29.6.747

    Article  CAS  Google Scholar 

  43. Ratchathorn P, Trairak P, Nuttiya K (2019) Quantitative proteomic analysis of dermal papilla from male androgenetic alopecia comparing before and after treatment with low-level laser therapy. Lasers Surg Med 51:600–608. https://doi.org/10.1002/lsm.23074

    Article  Google Scholar 

  44. Sebastian Y, Lan Cheng-Che E, Hsin-Su Y (2019) Mechanisms of repigmentation induced by photobiomodulation therapy in vitiligo. Exp Dermatol null:10–14. https://doi.org/10.1111/exd.13823

  45. Barbara S, Valerie H (2012) Unravelling hair follicle-adipocyte communication. Exp Dermatol 21:827–830. https://doi.org/10.1111/exd.12001

    Article  CAS  Google Scholar 

  46. Wu J-Y, Chia-Hsin C, Wang C-Z, Mei-Ling H, Ming-Long Y, Wang Y-H (2013) Low-power laser irradiation suppresses inflammatory response of human adipose-derived stem cells by modulating intracellular cyclic AMP level and NF-κB activity. PLoS One 8:e54067. https://doi.org/10.1371/journal.pone.0054067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. In-Su P, Chung P-S, Chul AJ (2017) Adipose-derived stem cell spheroid treated with low-level light irradiation accelerates spontaneous angiogenesis in mouse model of hindlimb ischemia. Cytotherapy 19:1070–1078. https://doi.org/10.1016/j.jcyt.2017.06.005

    Article  CAS  Google Scholar 

  48. Mvula B, Mathope T, Moore T, Abrahamse H (2008) The effect of low level laser irradiation on adult human adipose derived stem cells. Lasers Med Sci 23:277–282. https://doi.org/10.1007/s10103-007-0479-1

    Article  CAS  PubMed  Google Scholar 

  49. Garrido PR, Pedroni ACF, Cury DP, Moreira MS, Rosin F, Sarra G, Marques MM (2019) Effects of photobiomodulation therapy on the extracellular matrix of human dental pulp cell sheets. J Photochem Photobiol B Biol 194:149–157. https://doi.org/10.1016/j.jphotobiol.2019.03.017

    Article  CAS  Google Scholar 

  50. Renata MM, Müller RP, Amante MH (2020) Pattern hair loss: assessment of microinflammation in miniaturized and terminal hair follicles through horizontal histologic sections. J Am Acad Dermatol undefined:undefined. https://doi.org/10.1016/j.jaad.2020.03.119

  51. Jaworsky C, Kligman AM, Murphy GF (1992) Characterization of inflammatory infiltrates in male pattern alopecia: implications for pathogenesis. Br J Dermatol 127:239–246. https://doi.org/10.1111/j.1365-2133.1992.tb00121.x

    Article  CAS  PubMed  Google Scholar 

  52. Barbosa MA, Rapucci MLH, Sayuri MD, Reis FA, Rapucci MFDS, de Almeida HT, Adriana P, Elaine M (2015) Low-level laser therapy (LLLT) in dystrophin-deficient muscle cells: effects on regeneration capacity, inflammation response and oxidative stress. PLoS One 10:e0128567. https://doi.org/10.1371/journal.pone.0128567

    Article  CAS  Google Scholar 

  53. Ahmed OM, Tarek M, Hala M, Hany H, Ahmed RR, Ebtsam A (2018) Quercetin and low level laser therapy promote wound healing process in diabetic rats via structural reorganization and modulatory effects on inflammation and oxidative stress. Biomed Pharmacother 101:58–73. https://doi.org/10.1016/j.biopha.2018.02.040

    Article  CAS  PubMed  Google Scholar 

  54. Herbert PC, King Lloyd E, Messenger Andrew G, Christiano Angela M, Sundberg John P (2017) Alopecia areata. Nat Rev Dis Primers 3:17011. https://doi.org/10.1038/nrdp.2017.11

    Article  Google Scholar 

  55. Evan D, Harleen A, Hirt PA, Cao WT, Jimenez JJ (2018) A review of monochromatic light devices for the treatment of alopecia areata. Lasers Med Sci 33:435–444. https://doi.org/10.1007/s10103-017-2412-6

    Article  Google Scholar 

  56. Vivian C, Soares MAI, Lívia A, Paulo B, de Souza CJ, Benatti NC, Renan F, de Possol SH, Hamblin Michael R, Antonio PN (2013) Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1α and MMP-2. J Photochem Photobiol B Biol 125:164–170. https://doi.org/10.1016/j.jphotobiol.2013.06.004

    Article  CAS  Google Scholar 

  57. Yue L, Xu Q, Menglin S, Puying G, Qin H, Wang A, Tan G, Yangbin F, Liao H (2020) Low-level laser therapy induces human umbilical vascular endothelial cell proliferation, migration and tube formation through activating the PI3K/Akt signaling pathway. Microvasc Res 129:103959. https://doi.org/10.1016/j.mvr.2019.103959

    Article  CAS  Google Scholar 

  58. Andrea A, Silvia R, Francesca B, Stefano B, Isabella P, Laura V (2019) Photobiomodulation with 808-nm diode laser light promotes wound healing of human endothelial cells through increased reactive oxygen species production stimulating mitochondrial oxidative phosphorylation. Lasers Med Sci 34:495–504. https://doi.org/10.1007/s10103-018-2623-5

    Article  Google Scholar 

  59. Barufi FAT, Gonçalves SLM, Silva CM, Fernanda ZS, Paula VR, de Catarina FPT, Regina ZS (2016) Effect of photobiomodulation on endothelial cell exposed to Bothrops jararaca venom. Lasers Med Sci 31:1017–1025. https://doi.org/10.1007/s10103-016-1941-8

    Article  Google Scholar 

  60. Krzysztof G, Justyna S, Katarzyna S, Jacek F, Danuta R (2016) Low-level laser irradiation effect on endothelial cells under conditions of hyperglycemia. Lasers Med Sci 31:825–831. https://doi.org/10.1007/s10103-016-1880-4

    Article  Google Scholar 

  61. Yu-Hsiu C, Shu-Ya C, Yueh-Ling H, Yi-Hsien T, Cheng Y-J (2018) Low-level laser therapy prevents endothelial cells from TNF-α/cycloheximide-induced apoptosis. Lasers Med Sci 33:279–286. https://doi.org/10.1007/s10103-017-2364-x

    Article  Google Scholar 

  62. Paus R, Peters EM, Eichmüller S, Botchkarev VA (1997) Neural mechanisms of hair growth control. J Investig Dermatol Symp Proc 2:61–68. https://doi.org/10.1038/jidsymp.1997.13

    Article  CAS  PubMed  Google Scholar 

  63. Peters Eva MJ, Sven H, Greta G, Klapp BF, Arck PC, Ralf P (2006) Nerve growth factor and its precursor differentially regulate hair cycle progression in mice. J Histochem Cytochem 54:75–88. https://doi.org/10.1369/jhc.4A6585.2005

    Article  CAS  Google Scholar 

  64. Shortland P, Woolf CJ (1993) Chronic peripheral nerve section results in a rearrangement of the central axonal arborizations of axotomized A beta primary afferent neurons in the rat spinal cord. J Comp Neurol 330:65–82. https://doi.org/10.1002/cne.903300106

    Article  CAS  PubMed  Google Scholar 

  65. Björklund H, Dalsgaard CJ, Jonsson CE, Hermansson A (1986) Sensory and autonomic innervation of non-hairy and hairy human skin. An immunohistochemical study. Cell Tissue Res 243:51–57. https://doi.org/10.1007/BF00221851

    Article  PubMed  Google Scholar 

  66. Panchaprateep R, Korkij W, Asawanonda P (2011) Brain-derived nerve factor and neurotrophins in androgenetic alopecia. Br J Dermatol 165:997–1002. https://doi.org/10.1111/j.1365-2133.2011.10514.x

    Article  CAS  PubMed  Google Scholar 

  67. Xiaodong Y, Juanfang L, Zhengping Z, Wenhao L, Siguo S, Jian Z, Dong X, Jixian Q, Honghui S (2017) Low-level laser irradiation modulates brain-derived neurotrophic factor mRNA transcription through calcium-dependent activation of the ERK/CREB pathway. Lasers Med Sci 32:169–180. https://doi.org/10.1007/s10103-016-2099-0

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering for providing experimental instruments.

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 81772104, No. 81701929, No. 81971889, No. 81902013), the Natural Science Foundation of Guangdong Province (Grant No. 2017A030310120), the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515012170), the Science and Technology Program of Guangzhou (Grant No. 201904010480), and the Medical Scientific Research Foundation of Guangdong Province (Grant No. C2019112).

Author information

Authors and Affiliations

Authors

Contributions

Not applicable

Corresponding authors

Correspondence to Yong Miao or Zhiqi Hu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethics approval

This article does not contain any studies with human and animal experiments performed by any of the authors.

Consent to participate

Not applicable

Consent for publication

Not applicable

Code availability

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yilong Guo and Qian Qu are joint first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Qu, Q., Chen, J. et al. Proposed mechanisms of low-level light therapy in the treatment of androgenetic alopecia. Lasers Med Sci 36, 703–713 (2021). https://doi.org/10.1007/s10103-020-03159-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-020-03159-z

Keywords

Navigation