Skip to main content

Advertisement

Log in

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) proteomic profiling of cerebrospinal fluid in the diagnosis of enteroviral meningitis: a proof-of-principle study

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for diagnosing viral infections by directly testing clinical specimens has not previously been explored. In this proof-of-principle study, we tested the hypothesis that proteomic profiling of cerebrospinal fluid (CSF) by mass spectrometry may be useful in the diagnosis of enteroviral (EV) meningitis. A total of 114 cryopreserved CSF samples were analyzed, of which 47 were positive for EV and 67 were negative. Total CSF proteins were precipitated and subjected to MALDI-TOF-MS analysis in a low (2–20 kDa) molecular weight range using a MicroFlex LT mass spectrometer. The whole data set was randomly split into a training set (n = 76 specimens) and a validation set (n = 38 samples). Backward/forward stepwise logistic regression analyses identified 30 peaks that were differentially present in EV-positive and EV-negative specimens. These were used to build a model which displayed an overall classification accuracy of 93%. The discriminative ability of the model was confirmed by using a validation sample set (overall accuracy 83%). In fact, the model was able to correctly classify 61 out of 67 EV-negative samples and 42 out of 47 EV-positive specimens. EV meningitis is associated with a distinctive protein profile that may be directly detectable in CSF specimens by MALDI-TOF-MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Figure 2
Fig. 3

Similar content being viewed by others

References

  1. Doern CD, Butler-Wu SM (2016) Emerging and future applications of matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry in the clinical microbiology laboratory: a report of the association for molecular pathology. J Mol Diagn 18(6):789–802

    Article  CAS  Google Scholar 

  2. Angeletti S (2017) Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. J Microbiol Methods 138:20–29

    Article  CAS  Google Scholar 

  3. Erukhimovitch V, Karpasasa M, Huleihel M (2009) Spectroscopic detection and identification of infected cells with herpes viruses. Biopolymers 91(1):61–67

    Article  CAS  Google Scholar 

  4. Cobo F (2013) Application of maldi-tof mass spectrometry in clinical virology: a review. Open Virol J 7:84

    Article  Google Scholar 

  5. Calderaro A, Arcangeletti M-C, Rodighiero I, Buttrini M, Gorrini C, Motta F, Germini D, Medici M-C, Chezzi C, De Conto F (2014) Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applied to virus identification. Sci Rep 4:6803

    Article  CAS  Google Scholar 

  6. Majchrzykiewicz-Koehorst JA, Heikens E, Trip H, Hulst AG, de Jong AL, Viveen MC, Sedee NJ, van der Plas J, Coenjaerts FE, Paauw A (2015) Rapid and generic identification of influenza A and other respiratory viruses with mass spectrometry. J Virol Methods 213:75–83

    Article  CAS  Google Scholar 

  7. Sjöholm MI, Dillner J, Carlson J (2008) Multiplex detection of human herpesviruses from archival specimens by using matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 46(2):540–545

    Article  Google Scholar 

  8. Cricca M, Marasco E, Alessandrini F, Fazio C, Prossomariti A, Savini C, Venturoli S, Chieco P, De Carolis S, Bonafè M (2015) High-throughput genotyping of high-risk human papillomavirus by MALDI-TOF mass spectrometry-based method. New Microbiol 38(2):211–223

    CAS  PubMed  Google Scholar 

  9. Jurinke C, Zöllner B, Feucht H-H, Jacob A, Kirchhübel J, Lüchow A, Van den Boom D, Laufs R, Köster H (1996) Detection of hepatitis B virus DNA in serum samples via nested PCR and MALDI-TOF mass spectrometry. Genet Anal: Biomol Eng 13(3):67–71

    Article  CAS  Google Scholar 

  10. Luan J, Yuan J, Li X, Jin S, Yu L, Liao M, Zhang H, Xu C, He Q, Wen B (2009) Multiplex detection of 60 hepatitis B virus variants by maldi-tof mass spectrometry. Clin Chem 55(8):1503–1509

    Article  CAS  Google Scholar 

  11. Peng J, Yang F, Xiong Z, Guo J, Du J, Hu Y, Jin Q (2013) Sensitive and rapid detection of viruses associated with hand foot and mouth disease using multiplexed MALDI-TOF analysis. J Clin Virol 56(2):170–174

    Article  CAS  Google Scholar 

  12. Zhang C, Xiao Y, Du J, Ren L, Wang J, Peng J, Jin Q (2015) Application of multiplex PCR coupled with matrix-assisted laser desorption ionization–time of flight analysis for simultaneous detection of 21 common respiratory viruses. J Clin Microbiol 53(8):2549–2554

    Article  CAS  Google Scholar 

  13. Ilina EN, Malakhova MV, Generozov EV, Nikolaev EN, Govorun VM (2005) Matrix-assisted laser desorption ionization-time of flight (mass spectrometry) for hepatitis C virus genotyping. J Clin Microbiol 43(6):2810–2815

    Article  CAS  Google Scholar 

  14. King A, Adams M, Carstens E, Lefkowitz E (2011) The international code of virus classification and nomenclature. Virus taxonomy—ninth report of the International Committee on Taxonomy of Viruses Elsevier/Academic Press, London:1273–1277

  15. Rudolph H, Schroten H, Tenenbaum T (2016) Enterovirus infections of the central nervous system in children: an update. Pediatr Infect Dis J 35(5):567–569

    Article  Google Scholar 

  16. Huang H-I, Shih S-R (2015) Neurotropic enterovirus infections in the central nervous system. Viruses 7(11):6051–6066

    Article  CAS  Google Scholar 

  17. von Neuhoff N, Oumeraci T, Wolf T, Kollewe K, Bewerunge P, Neumann B, Brors B, Bufler J, Wurster U, Schlegelberger B (2012) Monitoring CSF proteome alterations in amyotrophic lateral sclerosis: obstacles and perspectives in translating a novel marker panel to the clinic. PLoS One 7(9):e44401

    Article  Google Scholar 

  18. Liguori M, Qualtieri A, Tortorella C, Direnzo V, Bagala A, Mastrapasqua M, Spadafora P, Trojano M (2014) Proteomic profiling in multiple sclerosis clinical courses reveals potential biomarkers of neurodegeneration. PLoS One 9(8):e103984

    Article  Google Scholar 

  19. Mather CA, Werth BJ, Sivagnanam S, SenGupta DJ, Butler-Wu SM (2016) Rapid detection of vancomycin-intermediate Staphylococcus aureus by matrixassisted laser desorption ionization–time of flight mass spectrometry. J Clin Microbiol 54:883–890. https://doi.org/10.1128/JCM.02428-15

    Article  CAS  Google Scholar 

  20. Wessel D, Flügge U (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138(1):141–143

    Article  CAS  Google Scholar 

  21. López-Fernández H, Santos H, Capelo JL, Fdez-Riverola F, Glez-Peña D, Reboiro-Jato M (2015) Mass-Up: an all-in-one open software application for MALDI-TOF mass spectrometry knowledge discovery. BMC Bioinformatics 16(1):318

    Article  Google Scholar 

  22. Vila J, Zboromyrska Y, Burillo A, Bouza E (2016) Future applications of mass spectrometry in microbiology. Enferm Infecc Microbiol Clin 34:53–58

    Article  Google Scholar 

  23. Thao NTT, Ngoc NTK, Tú PV, Thúy TT, Cardosa MJ, McMinn PC, Phuektes P (2010) Development of a multiplex polymerase chain reaction assay for simultaneous identification of human enterovirus 71 and coxsackievirus A16. J Virol Methods 170(1–2):134–139

    Article  Google Scholar 

  24. Piao J, Jiang J, Xu B, Wang X, Guan Y, Wu W, Liu L, Zhang Y, Huang X, Wang P (2012) Simultaneous detection and identification of enteric viruses by PCR-mass assay. PLoS One 7(8):e42251

    Article  CAS  Google Scholar 

  25. Chan SY, Sam I-C, Lai JK, Chan YF (2015) Cellular proteome alterations in response to enterovirus 71 and coxsackievirus A16 infections in neuronal and intestinal cell lines. J Proteome 125:121–130

    Article  CAS  Google Scholar 

  26. Simonsen AH, Bahl JM, Danborg PB, Lindstrom V, Larsen SO, Grubb A, Heegaard NH, Waldemar G (2013) Pre-analytical factors influencing the stability of cerebrospinal fluid proteins. J Neurosci Methods 215(2):234–240

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the residents of the Microbiology Service of Hospital Clínico Universitario. Estela Giménez holds a Río Hortega research contract from the Carlos III Health Institute (ISCIII (CM16/00200). We thank Ron Geller for providing the coxsackie B3 virus preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Navarro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

The Ethical Committee of Hospital Clínico Universitario Fundación INCLIVA deemed unnecessary specific approval for this study.

Informed consent

Not applicable (as discussed with the institutional medical ethical committee).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, I., Giménez, E., Vinuesa, V. et al. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) proteomic profiling of cerebrospinal fluid in the diagnosis of enteroviral meningitis: a proof-of-principle study. Eur J Clin Microbiol Infect Dis 37, 2331–2339 (2018). https://doi.org/10.1007/s10096-018-3380-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-018-3380-x

Keywords

Navigation