Skip to main content
Log in

The role of low-frequency rTMS in the superior parietal cortex during time estimation

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

The low-frequency repetitive transcranial magnetic stimulation (rTMS) application has been associated with changes in cognitive processes embedded during time perception tasks. Although several studies have investigated the influence of neuromodulation on time perception, the effect of the 1-Hz rTMS application on the superior parietal cortex is not clearly understood. This study analyzes the effect of the low-frequency rTMS on time estimation when applied in the parietal medial longitudinal fissure. For the proposed study, 20 subjects were randomly selected for a crossover study with two conditions (sham and 1 Hz). Our findings reveal that participant underestimate 1-s time interval and overestimate 4-s and 9-s time intervals after 1-Hz rTMS (p ≤ 0.05). We conclude that the 1-Hz rTMS in the parietal medial longitudinal fissure delays short interval and speed up long time intervals. This could be due to the effect of parietal inhibition on the attentional level and working memory functions during time estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Teixeira S, Machado S, Paes F, Velasques B, Silva JG, Sanfim AL, Minc D, Anghinah R, Menegaldo LL, Salama M, Cagy M, Nardi AE, Pöppel E, Bao Y, Szelag E, Ribeiro P, Arias-Carrión O (2013) Time perception distortion in neuropsychiatric and neurological disorders. CNS Neurol Disord Drug Targets 12(5):567–582

    Article  CAS  PubMed  Google Scholar 

  2. Matthews WJ, Meck WH (2014) Time perception: the bad news and the good. WIREs Cogn Sci 5:429–446

    Article  Google Scholar 

  3. Marinho V, Oliveira T, Rocha K, Ribeiro J, Magalhães F, Bento T, Pinto GR, Velasques B, Ribeiro P, Di Giorgio L, Orsini M, Gupta DS, Bittencourt J, Bastos VH, Teixeira S (2018) The dopaminergic system dynamic in the time perception: a review of the evidence. Int J Neurosci 128(3):262–282

    Article  CAS  PubMed  Google Scholar 

  4. Gupta DS (2014) Processing of sub- and supra-second intervals in the primate brain results from the calibration of neuronal oscillators via sensory, motor, and feedback processes. Front Psychol 5:816

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fontes R, Ribeiro J, Gupta DS, Machado D, Lopes-Júnior F, Magalhães F, Bastos VH, Rocha K, Marinho V, Lima G, Velasques B, Ribeiro P, Orsini M, Pessoa B, Leite MA, Teixeira S (2016) Time perception mechanisms at central nervous system. Neurol Int 8(1):5939

    Article  PubMed  PubMed Central  Google Scholar 

  6. Harrington DL, Zimbelman JL, Hinton SC, Rao SM (2010) Neural modulation of temporal encoding, maintenance, and decision processes. Cereb Cortex 20:1274–1285

    Article  PubMed  Google Scholar 

  7. Merchant H, Harrington DL, Meck WH (2013) Neural basis of the perception and estimation of time. Annu Rev Neurosci 36:313–336

    Article  CAS  PubMed  Google Scholar 

  8. Block RA, Grondin S (2014) Timing and time perception: a selective review and commentary on recent reviews. Front Psychol 5:648

    Article  PubMed  PubMed Central  Google Scholar 

  9. Oliveri M, Koch G, Salerno S, Torriero S, LoGerfo (2009) Caltagirone C. Representation of time intervals in the right posterior parietal cortex: implications for a mental time line. Neuroimage 46:1173–1179

    Article  PubMed  Google Scholar 

  10. Vicario CM, Martino D, Koch G (2013) Temporal accuracy and variability in the left and right posterior parietal cortex. Neuroscience 245:121–128

    Article  CAS  PubMed  Google Scholar 

  11. Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver TS (2013) Multi-task connectivity reveals flexible hubs for adaptive task control. Nat Neurosci 16:1348–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zanto TP, Gazzaley A (2013) Fronto-parietal network: flexible hub of cognitive control. Trends Cogn Sci 17:602–603

    Article  PubMed  Google Scholar 

  13. Coull JT, Cheng RK, Meck WH (2011) Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology. 36(1):3–25

    Article  PubMed  Google Scholar 

  14. Cook EP, Pack CC (2012) Parietal cortex signals come unstuck in time. PLoS Biol 10:e1001414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jones CRG, Malone TJL, Dirnberger G, Edwards M, Jahanshahi M (2008) Basal ganglia, dopamine and temporal processing: performance on three timing tasks on and off medication in Parkinson’s disease. Brain Cogn 68:30–41

    Article  PubMed  Google Scholar 

  16. Bueti D, Walsh V, Frith C, Rees G (2009) Different brain circuits underlie motor and perceptual representations of temporal intervals. J Cogn Neurosci 20(2):204–214

    Article  Google Scholar 

  17. Barzman D, Geise C, Lin P (2015) Review of the genetic basis of emotion dysregulation in children and adolescents. World J Psychiatry 5(1):112–117

    Article  PubMed  PubMed Central  Google Scholar 

  18. Livesey AC, Wall MB, Smith AT (2007) Time perception: manipulation of task difficulty dissociates clock functions from other cognitive demands. Neuropsychologia. 45(2):321–331

    Article  PubMed  Google Scholar 

  19. Macar F, Vidal F (2009) Timing processes: an outline of behavioural and neural indices not systematically considered in timing models. Can J Exp Psychol 63(3):227–239

    Article  PubMed  Google Scholar 

  20. Koenigs M, Barbey AK, Postle BR, Grafman J (2009) Superior parietal cortex is critical for the manipulation of information in working memory. J Neurosci 29(47):14980–14986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gongora M, Bittencourt J, Teixeira S, Basile LF, Pompeu F, Droguett EL, Arias-Carrion O, Budde H, Cagy M, Velasques B, Nardi AE, Ribeiro P (2016) Low-frequency rTMS over the Parieto-frontal network during a sensorimotor task: the role of absolute beta power in the sensorimotor integration. Neurosci Lett 12(611):1–5

    Article  CAS  Google Scholar 

  22. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 9(1):97–113

    Article  CAS  PubMed  Google Scholar 

  23. Rossi S, Hallett M, Rossini PM, Pascual-Leone A (2011) Screening questionnaire before TMS: an update. Clin Neurophysiol 122(8):1686

    Article  PubMed  Google Scholar 

  24. Wittmann M (2013) The inner sense of time: how the brain creates a representation of duration. Nat Rev Neurosci 14:217–223

    Article  CAS  PubMed  Google Scholar 

  25. Jozefowiez J, Polack CW, Machado A, Miller RR (2014) Trial frequency effects in human temporal bisection: implications for theories of timing. Behav Process 101:81–88

    Article  Google Scholar 

  26. Brown SW (1985) Time perception and attention: the effects of prospective versus retrospective paradigms and task demands on perceived duration. Percept Psychophys 38:115–124

    Article  CAS  PubMed  Google Scholar 

  27. Mioni G, Stablum F, Mcclintock SM, Grondin S (2014) Different methods for reproducing time, different results. Atten Percept Psychophysiol 76:675–681

    Article  Google Scholar 

  28. Najib U, Bashir S, Edwards D, Rotenberg A, Pascual-Leone A (2011) Transcranial brain stimulation: clinical applications and future directions. Neurosurg Clin N Am 22(2):233–251

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety OF (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120:2008–2039

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sato A, Torii T, Nakahara Y, Iwahashi M, Itoh Y, Iramina K (2013) The impact of rTMS over the dorsolateral prefrontal cortex on cognitive processing. ConfProc IEEE Eng Med Biol Soc:1988–1991

  31. Ribeiro JA, Marinho FVC, Rocha K, Magalhães F, Baptista AF, Velasques B, Ribeiro P, Cagy M, Bastos VH, Gupta D, Teixeira S (2018) Low-frequency rTMS in the superior parietal cortex affects the working memory in horizontal axis during the spatial task performance. Neurol Sci 39(3):527–532

    Article  PubMed  Google Scholar 

  32. Herwig U, Satrapi P, Schönfeldt-Lecuona C (2003) Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr 16(2):95–99

    Article  PubMed  Google Scholar 

  33. Kehrer S, Kraft A, Koch SP, Kathmann N, Irlbacher K, Brandt SA (2015) Timing of spatial priming within the fronto-parietal attention network: a TMS study. Neuropsychologia. 74:30–36

    Article  PubMed  Google Scholar 

  34. Vandenberghe R, Gitelman DR, Parrish TB, Mesulam MM (2001) Location- or feature-based targeting of peripheral attention. Neuroimage. 14(1 Pt 1):37–47

    Article  CAS  PubMed  Google Scholar 

  35. Oliveira FT, Diedrichsen J, Verstynen T, Duque J, Ivry RB (2010) Transcranial magnetic stimulation of posterior parietal cortex affects decisions of hand choice. Proc Natl Acad Sci U S A 107(41):17751–17756

    Article  PubMed  PubMed Central  Google Scholar 

  36. Duecker F, Sack AT (2015) Rethinking the role of sham TMS. Front Psychol 6:210

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41(1):3–13

    Article  PubMed  Google Scholar 

  38. Fayers PM, Machin D (1995) Sample size: how many patients are necessary? Br J Cancer 72:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Droit-Volet S (2013) Time perception, emotions and mood disorders. J Physiol Paris 107:255–264

    Article  PubMed  Google Scholar 

  40. Lake JI, Meck WH (2013) Differential effects of amphetamine and haloperidol on temporal reproduction: dopaminergic regulation of attention and clock speed. Neuropsychologia 51(2):284–292

    Article  PubMed  Google Scholar 

  41. Droit-Volet S, Gil S (2016) The emotional body and time perception. Cognit Emot 30(4):687–699

    Article  Google Scholar 

  42. French RM, Addyman C, Mareschal D, Thomas E (2014) Unifying Prospective and Retrospective interval-time estimation: a fading-gaussian activation-based model of interval-timing. Procedia Soc Behav Sci 126(21):141–150

    Article  Google Scholar 

  43. Coull JT, Vidal F, Nazarian B et al (2004) Functional anatomy of the attentional modulation of time estimation. Science 5:1506–1508

    Article  CAS  Google Scholar 

  44. Ivry RB, Spencer RM (2004) The neural representation of time. Curr Opin Neurobiol 14(2):225–232

    Article  CAS  PubMed  Google Scholar 

  45. Jones CR, Rosenkranz K, Rothwell JC, Jahanshahi M (2004) The right dorsolateral prefrontal cortex is essential in time reproduction: an investigation with repetitive transcranial magnetic stimulation. Exp Brain Res 158:366–372

    Article  PubMed  Google Scholar 

  46. Grondin S (2010) Timing and time perception: a review of recent behavioral and neuroscience findings and theoretical directions. AP&P 72(3):561–582

    Google Scholar 

  47. Droit-Volet S, Meck WH (2007) How emotions colour our perception of time. Trends Cogn Sci 11(12):504–513

    Article  PubMed  Google Scholar 

  48. Wittmann M (2009) The inner experience of time. Philos Trans R Soc B 364:1955–1967

    Article  Google Scholar 

  49. Fiorillo CD, Newsome WT, Schultz W (2008) The temporal precision of reward prediction in dopamine neurons. Nat Neurosci 11(8):966–973

    Article  CAS  PubMed  Google Scholar 

  50. Koch G, Oliveri M, Caltagirone C (2009) Neural networks engaged in milliseconds and seconds time processing: evidence from transcranial magnetic stimulation and patients with cortical or subcortical dysfunction. Philos Trans R Soc Lond Ser B Biol Sci 364:1907–1918

    Article  Google Scholar 

  51. Carvalho FM, Chaim KT, Sanchez TA, Araujo DB (2016) Time-Perception Network and Default mode network are associated with temporal prediction in a periodic motion task. Front Hum Neurosci 10:268

    Article  PubMed  PubMed Central  Google Scholar 

  52. Alonso-Valerdi LM, Sepulveda F, Ramírez-Mendoza RA (2015) Perception and Cognition of cues used in synchronous brain–computer interfaces modify electroencephalographic patterns of control tasks. Front Hum Neurosci 9:636

    Article  PubMed  PubMed Central  Google Scholar 

  53. Karaminis T, Cicchini GM, Neil L, Cappagli G, Aagten-Murphy D, Burr D, Pellicano E (2016) Central tendency effects in time interval reproduction in autism. Sci Rep 6:28570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Murai Y, Yotsumoto Y (2016) Time scale- and sensory modality-dependency of the central tendency of time perception. PLoS One 11:e0158921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Righi S, Galli L, Paganini M, Bertini L, Viggiano MP, Piacentini S (2016; Jan) Time perception impairment in early-to-moderate stages of Huntington’s disease is related to memory deficits. Neurol Sci 37(1):97–104

    Article  PubMed  Google Scholar 

  56. Gibbon J (1977) Scalar expectancy theory and Weber’s law in animal timing. Psychol Rev 84:279–325

    Article  Google Scholar 

  57. Lewis PA, Miall RC (2009) The precision of temporal judgement: milliseconds, many minutes, and beyond. Philos Trans R Soc Lond Ser B Biol Sci 364(1525):1897–1905

    Article  CAS  Google Scholar 

  58. Gruber RP, Block RA (2013) The flow of time as a perceptual illusion. J Mind Behav 34:91–100

    Google Scholar 

  59. Buhusi CV, Meck WH (2009) Relativity Theory and Time perception: single or multiple clocks? PLoS One 4(7):e6268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bonato M, Zorzi M, Umiltà C (2012) When time is space: evidence for a mental time line. Neurosci Biobehav Rev 36(10):2257–2273

    Article  PubMed  Google Scholar 

  61. Ogden RS, Moore D, Redfern L, McGlone F (2014) The effect of pain and the anticipation of pain on temporal perception: a role for attention and arousal. Cognit Emot 29(5):910–922

    Article  Google Scholar 

  62. Albrecht DS, Kareken DA, Christian BT, Dzemidzic M, Yoder KK (2014) Cortical dopamine release during a behavioral response inhibition task. Synapse. 68(6):266–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Strafella AP, Ko JH, Monchi O (2006) Therapeutic application of transcranial magnetic stimulation in Parkinson’s disease: the contribution of expectation. NeuroImage 31(4):1666–1672

    Article  PubMed  Google Scholar 

  64. Treister R, Lang M, Klein MM, Oaklander AL (2013) Non-invasive transcranial magnetic stimulation (TMS) of the motor cortex for neuropathic pain—at the tipping point? Rambam Maimonides Med J 4(4):e0023

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Brazil’s National Council for Scientific and Technological Development (CNPq) for supporting this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaline Rocha.

Ethics declarations

The ethics committee of the Federal University of Rio de Janeiro approved the protocol for the study (no. 520.189).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manaia, F., Rocha, K., Marinho, V. et al. The role of low-frequency rTMS in the superior parietal cortex during time estimation. Neurol Sci 40, 1183–1189 (2019). https://doi.org/10.1007/s10072-019-03820-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-019-03820-8

Keywords

Navigation