Skip to main content
Log in

Low-frequency rTMS in the superior parietal cortex affects the working memory in horizontal axis during the spatial task performance

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Spatial working memory has been extensively investigated with different tasks, treatments, and analysis tools. Several studies suggest that low frequency of the repetitive transcranial magnetic stimulation (rTMS) applied to the parietal cortex may influence spatial working memory (SWM). However, it is not yet known if after low-frequency rTMS applied to the superior parietal cortex, according to Pz electroencephalography (EEG) electrode, would change the orientation interpretation about the vertical and horizontal axes coordinates in an SWM task. The current study aims at filling this gap and obtains a better understanding of the low-frequency rTMS effect in SWM. In this crossover study, we select 20 healthy subjects in two conditions (control and 1-Hz rTMS). The subjects performed an SWM task with two random coordinates. Our results presented that low-frequency rTMS applied over the superior parietal cortex may influence the SWM to lead to a larger distance of axes interception point (p < 0.05). We conclude that low-frequency rTMS over the superior parietal cortex (SPC) changes the SWM performance, and it has more predominance in horizontal axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vergauwe E, Cowan N (2014) A common short-term memory retrieval rate may describe many cognitive procedures. Front Hum Neurosci 8:126

    Article  PubMed  PubMed Central  Google Scholar 

  2. Luck SJ, Vogel EK (1997) The capacity of visual working memory for features and conjunctions. Nature 390(6657):279–281. https://doi.org/10.1038/36846

    Article  CAS  PubMed  Google Scholar 

  3. Nelson Cowan J, Saults S, Blume CL (2014) Central and peripheral components of working memory storage. J Exp Psychol Gen 143(5):1806–1836. https://doi.org/10.1037/a0036814

    Article  PubMed  PubMed Central  Google Scholar 

  4. Federico F, Delogu F, Raffone A (2014) Maintenance and manipulation of object sequences in working memory: a lifespan study. Neurol Sci 35(12):1883–1887. https://doi.org/10.1007/s10072-014-1851-0

    Article  PubMed  Google Scholar 

  5. O’Reilly JX, Schüffelgen U, Cuell SF, Behrens TE, Mars RB, Rushworth MF (2013) Dissociable effects of surprise and model update in parietal and anterior cingulate cortex. Proc Natl Acad Sci U S A 110(38):E3660–E3669. https://doi.org/10.1073/pnas.1305373110

    Article  PubMed  PubMed Central  Google Scholar 

  6. Üstün S, Kale EH, Çiçek M (2017) Neural networks for time perception and working memory. Front Hum Neurosci 11:83

    Article  PubMed  PubMed Central  Google Scholar 

  7. Koenigs M, Acheson DJ, Barbey AK, Solomon J, Postle BR, Grafman J (2011) Areas of left perisylvian cortex mediate auditory-verbal short-term memory. Neuropsychologia 49(13):3612–3619. https://doi.org/10.1016/j.neuropsychologia.2011.09.013

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pennick MR, Kana RK (2012) Specialization and integration of brain responses to object recognition and location detection. Brain Behav 2(1):6–14. https://doi.org/10.1002/brb3.27

    Article  PubMed  PubMed Central  Google Scholar 

  9. Koenigs M, Barbey AK, Postle BR, Grafman J (2009) Superior parietal cortex is critical for the manipulation of information in working memory. J Neurosci 29(47):14980–14986. https://doi.org/10.1523/JNEUROSCI.3706-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pinto Y, van der Leij AR, Sligte IG, Lamme VA, Scholte HS (2013) Bottom-up and top-down attention are independent. J Vis 13(3):16. https://doi.org/10.1167/13.3.16

    Article  PubMed  Google Scholar 

  11. Parks EL, Madden DJ (2013) Brain connectivity and visual attention. Brain Connect 3(4):317–338. https://doi.org/10.1089/brain.2012.0139

    Article  PubMed  PubMed Central  Google Scholar 

  12. Garcea FE, Mahon BZ (2014) Parcellation of left parietal tool representations by functional connectivity. Neuropsychologia 60:131–143

    Article  PubMed  PubMed Central  Google Scholar 

  13. Herwig U, Satrapi P, Schönfeldt-Lecuona C (2003) Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr 16(2):95–99. https://doi.org/10.1023/B:BRAT.0000006333.93597.9d

    Article  PubMed  Google Scholar 

  14. Postle BR, Ferrarelli F, Hamidi M, Feredoes E, Massimini M, Peterson M, Alexander A, Tononi G (2006) Repetitive transcranial magnetic stimulation dissociates working memory manipulation from retention functions in the prefrontal, but not posterior parietal, cortex. J Cogn Neurosci 18(10):1712–1722. https://doi.org/10.1162/jocn.2006.18.10.1712

    Article  PubMed  Google Scholar 

  15. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113. https://doi.org/10.1016/0028-3932(71)90067-4

    Article  CAS  PubMed  Google Scholar 

  16. Kehrer S, Kraft A, Koch SP, Kathmann N, Irlbacher K, Brandt SA (2015) Timing of spatial priming within the fronto-parietal attention network: a TMS study. Neuropsychologia 74:30–36. https://doi.org/10.1016/j.neuropsychologia.2014.11.017

    Article  PubMed  Google Scholar 

  17. Rossi S, Hallett M, Rossini PM, Pascual-Leone A (2011) Screening questionnaire before TMS: an update. Clin Neurophysiol 122(8):1686. https://doi.org/10.1016/j.clinph.2010.12.037

    Article  PubMed  Google Scholar 

  18. Humphreys GF, Lambon Ralph MA (2015) Fusion and fission of cognitive functions in the human parietal cortex. Cereb Cortex 25(10):3547–3560

    Article  PubMed  Google Scholar 

  19. Wager TD, Smith EE (2003) Neuroimaging studies of working memory: a meta-analysis. Cogn Affect Behav Neurosci 3(4):255–274. https://doi.org/10.3758/CABN.3.4.255

    Article  PubMed  Google Scholar 

  20. Duecker F, Sack AT (2015) Rethinking the role of sham TMS. Front Psychol 6:210

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gongora M, Bittencourt J, Teixeira S, Basile LF, Pompeu F, Droguett EL, Arias-Carrion O, Budde H, Cagy M, Velasques B, Nardi AE, Ribeiro P (2016) Low-frequency rTMS over the parieto-frontal network during a sensorimotor task: the role of absolute beta power in the sensorimotor integration. Neurosci Lett 611:1–5. https://doi.org/10.1016/j.neulet.2015.11.025

    Article  CAS  PubMed  Google Scholar 

  22. Najib U, Bashir S, Edwards D, Rotenberg A, Pascual-Leone A (2011) Transcranial brain stimulation: clinical applications and future directions. Neurosurg Clin N Am 22(2):233–251, ix. https://doi.org/10.1016/j.nec.2011.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety of TMS Consensus Group (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120(12):2008–2039. https://doi.org/10.1016/j.clinph.2009.08.016

    Article  PubMed  PubMed Central  Google Scholar 

  24. Vandenberghe R, Gitelman DR, Parrish TB, Mesulam MM (2001) Location- or feature-based targeting of peripheral attention. NeuroImage 14(1 Pt 1):37–47. https://doi.org/10.1006/nimg.2001.0790

    Article  CAS  PubMed  Google Scholar 

  25. Oliveira FT, Diedrichsen J, Verstynen T, Duque J, Ivry RB (2010) Transcranial magnetic stimulation of posterior parietal cortex affects decisions of hand choice. Proc Natl Acad Sci U S A 107(41):17751–17756. https://doi.org/10.1073/pnas.1006223107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41(1):3–13. https://doi.org/10.1249/MSS.0b013e31818cb278

    Article  PubMed  Google Scholar 

  27. Fayers PM, Machin D (1995) Sample size: how many patients are necessary? Br J Cancer 72(1):1–9. https://doi.org/10.1038/bjc.1995.268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fougnie D, Marois R (2011) What limits working memory capacity? Evidence for modality-specific sources to the simultaneous storage of visual and auditory arrays. J Exp Psychol Learn Mem Cogn 37(6):1329–1341. https://doi.org/10.1037/a0024834

    Article  PubMed  PubMed Central  Google Scholar 

  29. Murray AM, Nobre AC, Stokes MG (2011) Markers of preparatory attention predict visual short-term memory performance. Neuropsychologia 49(6):1458–1465. https://doi.org/10.1016/j.neuropsychologia.2011.02.016

    Article  PubMed  PubMed Central  Google Scholar 

  30. Proctor RW, Cho YS (2006) Polarity correspondence: a general principle for performance of speeded binary classification tasks. Psychol Bull 132(3):416–442. https://doi.org/10.1037/0033-2909.132.3.416

    Article  PubMed  Google Scholar 

  31. Neiman T, Loewenstein Y (2014) Spatial generalization in operant learning: lessons from professional basketball. PLoS Comput Biol 10(5):e1003623. https://doi.org/10.1371/journal.pcbi.1003623

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kaminski JA, Korb FM, Villringer A, Ott DV (2011) Transcranial magnetic stimulation intensities in cognitive paradigms. PLoS One 6(9):e24836. https://doi.org/10.1371/journal.pone.0024836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Treister R, Lang M, Klein MM, Oaklander AL (2013) Non-invasive transcranial magnetic stimulation (TMS) of the motor cortex for neuropathic pain—at the tipping point? Rambam Maimonides Med J 4(4):e0023

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Victor Costa Marinho.

Ethics declarations

Participants signed the free and informed consent term. The protocol was approved by the ethics committee of Federal University of Rio de Janeiro (no. 520.189).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, J.A., Marinho, F.V.C., Rocha, K. et al. Low-frequency rTMS in the superior parietal cortex affects the working memory in horizontal axis during the spatial task performance. Neurol Sci 39, 527–532 (2018). https://doi.org/10.1007/s10072-017-3243-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-017-3243-8

Keywords

Navigation