Skip to main content
Log in

Optimization of succinic acid production from cane molasses by Actinobacillus succinogenes GXAS137 using response surface methodology (RSM)

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

A method combining a Plackett-Burman design (PBD), the steepest ascent method (SA), and a Box-Behnken design (BBD) was developed to optimize succinic acid production from cane molasses by Actinobacillus succinogenes GXAS137. The important parameters were (g/L): total sugars of cane molasses (85 g/L), yeast extract (8.84 g/L), and MgCO3 (63.1 g/L). Verification experiments indicated that the maximal succinic acid production reached 57.43±0.86 g/L, which agreed with the predicted value (57.12 g/L). In addition, batch and fed-batch fermentations were carried out in a 1.3 L stirred bioreactor. Compared with a batch fermentation that produced 57.96 g/L of succinic acid at 60 h, a fed-batch fermentation, performed to minimize the inhibition effect of the substrate, produced 64.34 g/L of succinic acid at 60 h. The combined method is powerful for selection of optimized conditions for succinic acid production from cane molasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Song H, Lee SY. Production of succinic acid by bacterial fermentation. Enzyme Microb. Technol. 39: 352–361 (2006)

    Article  CAS  Google Scholar 

  2. Wilke D. Chemicals from biotechnology: molecular plant genetics will challenge the chemical and the fermentation industry. Appl. Microbiol. Biotechnol. 52: 135–145 (1999)

    Article  CAS  Google Scholar 

  3. Xi YL, Chang KQ, Zhang JH, Bai XF, Jiang M, Wei P. Effect of biotin and a similar compound on succinic acid fermentation by Actinobacillus succinogenes in a chemically defined medium. Biochem. Eng. J. 69: 87–92 (2012)

    Article  CAS  Google Scholar 

  4. Guettler MV, Rumler D, Jain MK. Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen. Int. J. Syst. Bacteriol. 49: 207–216 (1999)

    Article  CAS  Google Scholar 

  5. Wang CX, Lee YB, Shahbazi A, Xiu SN. Succinic acid production from cheese whey using Actinobacillus succinogenes 130 Z. Appl. Biochem. Biotechnol. 145: 111–119 (2008)

    Article  Google Scholar 

  6. Oh IJ, Lee HW, Park CH, Lee SY, Lee J. Succinic acid production by continuous fermentation process using Mannheimaia succiniciproducens LPK7. J. Microbiol. Biotechnol. 18: 908–912 (2008)

    CAS  Google Scholar 

  7. Lee PC, Lee SY, Hong SH, Chang HN, Park SC. Biological conversion of wood hydrolysate to succinic acid by Anaerobiospirillum succiniciproducens. Biotechnol. Lett. 25: 111–114 (2003)

    Article  CAS  Google Scholar 

  8. Jiang M, Liu SW, Chen JF, Yu KQ, Li Y, Yue FF, Xu B, Wei P. Effect of growth phase feeding strategies on succinate production by metabolically engineered Escherichia coli. Appl. Environ. Microb. 76: 1298–1300 (2010)

    Article  CAS  Google Scholar 

  9. Mckinlay J, Vieille C, Zeikus JG. Prospects for a bio-based succinate industry. Appl. Microbiol. Biotechnol. 76: 727–740 (2007)

    Article  CAS  Google Scholar 

  10. Mckinlay J, Zeikus JG, Vieille C. Insights into Actinobacillus succinogenes fermentative metabolism in a chemically defined growth medium. Appl. Environ. Microbiol. 71: 6651–6656 (2005)

    Article  CAS  Google Scholar 

  11. Zhu LW, Wang CC, Liu RS, Li HM, Wang DJ, Tang YJ. Actinobacillus succinogenes ATCC 55618 fermentation medium optimization for the production of succinic acid by response surface methodology. J. Biomed. Biotechnol. 2012: 626137 (2012)

    Google Scholar 

  12. Dorado MP, Lin SKC, Koutinas A, Du CY, Wang RH, Webb C. Cereal-based biorefinery development: Utilisation of wheat milling by-products for the production of succinic acid. J. Biotechnol. 143: 51–59 (2009)

    Article  CAS  Google Scholar 

  13. Xi YL, Dai WY, Xu R, Zhang JH, Chen KQ, Jiang M, Wei P, Ouyang PK. Ultrasonic pretreatment and acid hydrolysis of sugarcane bagasse for succinic acid production using Actinobacillus succinogenes. Bioproc. Biosyst. Eng. 36: 1779–1785 (2013)

    Article  CAS  Google Scholar 

  14. Mckinlay J, Zeikus JG, Vieille C. Insights into Actinobacillus succinogenes fermentative metabolism in a chemically defined growth medium. Appl. Environ. Microbiol. 71: 6651–6656 (2005)

    Article  CAS  Google Scholar 

  15. Kotzamanidis C, Roukas T, Skaracis G. Optimization of lactic acid production from beet molasses by Lactobacillus delbrueckii NCIMB 8130. World J. Microbiol. Biotechnol. 18: 441–448 (2002)

    Article  CAS  Google Scholar 

  16. Liu YP, Zhang P, Sun ZH, Ni Y, Dong JJ, Zhu LL. Economical succinic acid production from cane molasses by Actinobacillus succinogene. Bioresource Technol. 99: 1736–1742 (2008)

    Article  CAS  Google Scholar 

  17. Dumbrepatil A, Adsul M, Chaudhari S, Khire J, Gokhale D. Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii Mutant Uc-3 in Batch Fermentation. Appl. Environ. Microb. 74: 333–335 (2008)

    Article  CAS  Google Scholar 

  18. Ghorbani F, Younesi H, Esmaeili SB, Najafpour G. Cane molasses fermentation for continuous ethanol production in an immobilized cells reactor by Saccharomyces cerevisiae. Renew. Energ. 36: 503–509 (2011)

    Article  CAS  Google Scholar 

  19. Ikamul H, ALI S, Qadeer M, Iqbal J. Citric acid production by selected mutants of Aspergillus niger from cane molasses. Bioresource Technol. 93: 125–130 (2004)

    Article  Google Scholar 

  20. Azma M, Mohamed MS, Mohamed R, Rahim RA, Ariff, AB. Improvement of medium composition for heterotrophic cultivation of green microalgae, Tetraselmis suecica, using response surface methodology. Biochem. Eng. J. 53: 187–195 (2011)

    Article  CAS  Google Scholar 

  21. Roukas T, Niavi P, Kotzekidou P. A new medium for spore production of Blakeslea trispora using response surface methodology. World J. Microbiol. Biotechnol. 27: 307–317 (2011)

    Article  CAS  Google Scholar 

  22. Febe F, Abdulhameed S, Madhavan NK, Sumitra R, Sanjoy G, George S, Ashok P. Use of response surface methodology for optimizing process parameters for the production of α-amylase by Aspergillus oryzae. Biochem. Eng. J. 15: 107–115 (2003)

    Article  Google Scholar 

  23. Song H, Huh YS, Lee SY, Hong WH, Hong YK. Recovery of succinic acid produced by fermentation of a metabolically engineered Mannheimia succiniciproducens strain. J. Biotechnol. 132: 445–452 (2007)

    Article  CAS  Google Scholar 

  24. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428 (1959)

    Article  CAS  Google Scholar 

  25. Urbance SE, Pometto AL 3rd, Dispirito AA, Denli Y. Evaluation of succinic acid continuous and repeat-batch biofilm fermentation by Actinobacillus succinogenes using plastic composite support bioreactors. Appl. Microbiol. Biotechnol. 65: 664–70 (2004)

    Article  CAS  Google Scholar 

  26. Lin SKC, Du C, Koutinas A, Wang R, Webb C. Substrate and product inhibition kinetics in succinic acid production by Actinobacillus succinogenes. Biochem. Eng. J. 41: 128–135 (2008)

    Article  CAS  Google Scholar 

  27. Podkovyrov SM, Zeikus JG. Purification and characterization of phosphoenolpyruvate carboxykinase, a catabolic CO2-fixing enzyme, from Anaerobiospirillum succiniciproducens. J. Gen. Microbiol. 139: 223–228 (1993)

    Article  CAS  Google Scholar 

  28. McKinlay JB, Vieille C. 13C-metabolic flux analysis of Actinobacillus succinogenes fermentative metabolism at different NaHCO3 and H2 concentrations. Metab. Eng. 10: 55–68 (2008)

    Article  CAS  Google Scholar 

  29. Bazaes S, Toncio M, Laivenieks M, Zeikus JG, Cardemil E. Comparative kinetic effects of Mn(II), Mg(II), and the ATP/ADP ratio on phosphoenolpyruvate carboxykinases from Anaerobiospirillum succiniciproducens and Saccharomyces cerevisiae. Protein J. 26: 265–269 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ribo Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, N., Wang, Q., Qin, Y. et al. Optimization of succinic acid production from cane molasses by Actinobacillus succinogenes GXAS137 using response surface methodology (RSM). Food Sci Biotechnol 23, 1911–1919 (2014). https://doi.org/10.1007/s10068-014-0261-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0261-7

Keywords

Navigation