Skip to main content
Log in

Expression of BrD1, a plant defensin from Brassica rapa, confers resistance against brown planthopper (Nilaparvata lugens) in transgenic rices

  • Published:
Molecules and Cells

Abstract

Plant defensins are small (5-10 kDa) basic peptides thought to be an important component of the defense pathway against fungal and/or bacterial pathogens. To understand the role of plant defensins in protecting plants against the brown planthopper, a type of insect herbivore, we isolated the Brassica rapa Defensin 1 (BrD1) gene and introduced it into rice (Oryza sativa L.) to produce stable transgenic plants. The BrD1 protein is homologous to other plant defensins and contains both an N-terminal endoplasmic reticulum signal sequence and a defensin domain, which are highly conserved in all plant defensins. Based on a phylogenetic analysis of the defensin domain of various plant defensins, we established that BrD1 belongs to a distinct subgroup of plant defensins. Relative to the wild type, transgenic rices expressing BrD1 exhibit strong resistance to brown planthopper nymphs and female adults. These results suggest that BrD1 exhibits insecticidal activity, and might be useful for developing cereal crop plants resistant to sap-sucking insects, such as the brown planthopper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfonso-Rubí, J., Ortego, F., Castañera, P., Carbonero, P., and Díaz, I. (2003). Transgenic expression of trypsin inhibitor CMe from barley in indica and japonica rice, confers resistance to the rice weevil Sitophilus oryzae. Transgenic Res. 12, 23–31.

    Article  PubMed  Google Scholar 

  • Bandyopadhyay, S., Roy, A., and Das, S. (2001). Binding of garlic (Allium sativum) leaf lectin to the gut receptors of homopteran pests is correlated to its insecticidal activity. Plant Sci. 161, 1025–1033.

    Article  CAS  Google Scholar 

  • Cha, Y.S., Ji, H., Yun, D.W., Ahn, B.O., Lee, M.C., Suh, S.C., Lee, C.S., Ahn, E.K., Jeon, Y.H., Jin, I.D., et al. (2008). Fine mapping of the rice Bph1 gene, which confers resistance to the brown planthopper (Nilaparvata lugens Stal), and development of STS markers for marker-assisted selection. Mol. Cells 26, 146–151.

    PubMed  CAS  Google Scholar 

  • Clarke, J.D. (2009). Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harb. Protoc: doi:10.1101/pdb.prot5177.

  • Dutta, I., Saha, P., Majumder, P., Sarkar, A., Chakraborti, D., Banerjee, S., and Das, S. (2005)a. The efficacy of a novel insecticidal protein, Allium sativum leaf lectin (ASAL), against homopteran insects monitored in transgenic tobacco. Plant Biotechnol. J. 3, 601–611.

    Article  PubMed  CAS  Google Scholar 

  • Dutta, I., Majumder, P., Saha, P., Ray, K., and Das, S. (2005)b. Constitutive and phloem specific expression of Allium sativum leaf agglutinin (ASAL) to engineer aphid (Liphaphis erysimi) resistance in transgenic Indian mustard (Brassica juncea). Plant Sci. 169, 996–1007.

    Article  CAS  Google Scholar 

  • Epple, P., Apel, K., and Bohlmann, H. (1997). ESTs reveal a multigene family for plant defensins in Arabidopsis thaliana. FEBS Lett. 400, 168–172.

    Article  PubMed  CAS  Google Scholar 

  • Falk, B., and Tsai, T.H. (1998). Biology and molecular biology of viruses in the genus tenuiviruses. Annu. Rev. Phytopathol. 36, 139–163.

    Article  PubMed  CAS  Google Scholar 

  • Foissac, X., Thi Loc, N., Christou, P., Gatehouse, A.M., and Gatehouse, J.A. (2000). Resistance to green leafhopper (Nephotettix virescens) and brown planthopper (Nilaparvata lugens) in transgenic rice expressing snowdrop lectin (Galanthus nivalis agglutinin; GNA). J. Insect Physiol. 46, 573–583.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher, K.D., Kenmore, P.E., and Sogawa, K. (1994). Judicial use of insecticides deter planthopper outbreaks and extend the life of resistant varieties in Southeast Asia rice. In: R.F. Denno and J.T. Perfect, eds., Planthoppers: Their ecology and management, (Chapman & Hall, New York) pp. 599–614.

    Google Scholar 

  • Jang, I.C., Choi, W.B., Lee, K.H., Song, S.I., Nahm, B.H., and Kim, J.K. (2002). High-level and ubiquitous expression of the rice cytochrome c gene (OsCc1) and its promoter activity in transgenic plants provides a useful promoter for transgenesis of monocots. Plant Physiol. 129, 1473–1481.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.M., and Shon, J.K. (2005). Identification of a rice gene (Bph 1) conferring resistance to brown planthopper (Nilaparvata Iugens Stal) using STS markers. Mol. Cells 20, 30–34.

    PubMed  CAS  Google Scholar 

  • Lay, F.T., and Anderson, M.A. (2005). Defensins—components of the innate immune system in plants. Curr. Protein Pept. Sci. 6, 85–101.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.I., Lee, S.H., Koo, J.C., Chun, H.J., Lim, C.O., Mun, J.H., Song, Y.H., and Cho, M.J. (1999). Soybean kunitz trypsin inhibitor (SKTI) confers resistance to the brown planthopper (Nilaparvata lugens Stal) in transgenic rice. Mol. Breed 5, 1–9.

    Article  Google Scholar 

  • Loc, N.T., Tinjuangjun, P., Gatehouse, A.M.R., Christou, P., and Gatehouse, J.A. (2002). Linear transgene constructs lacking vector backbone sequences generate transgenic rices which accumulate higher levels of proteins conferring insects resistance. Mol. Breed 9, 231–244.

    Article  CAS  Google Scholar 

  • Majumder, P., Banerjee, S., and Das, S. (2004). Identification of receptors responsible for binding of the mannose specific lectin to the gut epithelial membrane of the target insects. Glycoconj. J. 20, 525–530.

    Article  PubMed  CAS  Google Scholar 

  • Mendez, E., Moreno, A., Colilla, F., Pelaez, F., Limas, G.G., Mendez, R., Soriano, F., Salinas, M., and de Haro, C. (1990). Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, gamma-hordothionin, from barley endosperm. Eur. J. Biochem. 194, 533–539.

    Article  PubMed  CAS  Google Scholar 

  • Park, Y.S., Jeon, M.H., Lee, S.H., Moon, J.S., Cha, J.S., Kim, H.Y., and Cho, T.J. (2005). Activation of defense response in Chinese cabbage by a nonhost pathogene, Pseudomonas syringe pv. tomato. J. Biochem. Mol. Biol. 38, 748–754.

    PubMed  CAS  Google Scholar 

  • Powell, K.S. (2001). Antifeedant effects of plant lectins towards nymphal stages of the planthoppers Tarophagous proserphina and Nilaparvata lugens. Entomol. Exp. Appl. 99, 71–77.

    Article  CAS  Google Scholar 

  • Ramesh, S., Nagadhara, D., Reddy, V.D., and Rao, K.V. (2004). Production of transgenic indica rice resistant to yellow stem borer and sap-sucking insects, using super-binary vectors of Agrobacterium tumefaciens. Plant Sci. NSS, 1077–1085.

  • Roy-Barman, S., Sautter, C., and Chattoo, B.B. (2006). Expression of the lipid transfer protein Ace-AMP1 in transgenic wheat enhances antifungal activity and defense responses. Transgenic Res. 15, 435–446.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh, H., Kiba, A., Nishihara, M., Yamamura, S., Suzuki, K., and Terauchi, R. (2001). Production of antimicrobial defensin in Nicotiana benthamiana with a potato virus X vector. Mol. Plant-Microbe Interact. 14, 111–115.

    Article  PubMed  CAS  Google Scholar 

  • Schuler, T.H., Poppy, G.M., Kerry, B.R., and Denholm, I. (1999). Insect-resistant transgenic plants. Trends Biotechnol. 16, 168–175.

    Article  Google Scholar 

  • Sohn, S.I., Kim, Y.H., Cho, J.H., Kim, J.G., and Lee, J.Y. (2006). An efficient selection scheme for Agrobacterium-mediated cotransformation of rice using two selectable marker genes hpt and bar. Korean J. Breed PU, 173–179.

  • Tan, G.X., Weng, Q.M., Ren, X., Huang, Z., Zhu, L.L., and He, G.C. (2004). Two whitebacked planthopper resistance genes in rice share the same loci with those for brown planthopper resistance. Heredity 92, 211–217.

    Article  Google Scholar 

  • Terras, F.R.G., Eggermont, K., Kovaleva, V., Raikhel, N.V., Osborn, R.W., Kester, A., Rees, S.B., Torrekens, S., Van Leuven, F., Vanderleyden, J., et al. (1995). Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell 7, 573–588.

    Article  PubMed  CAS  Google Scholar 

  • Thevissen, K., François, I.E., Takemoto, J.Y., Ferket, K.K., Meert, E.M., and Cammue, B.P. (2003). DmAMP1, an antifungal plant defensin from dahlia (Dahlia merckii), interacts with sphingolipids from Saccharomyces cerevisiae. FEMS Microbiol. Lett. 226, 169–173.

    Article  PubMed  CAS  Google Scholar 

  • Thevissen, K., Warnecke, D.C., François, I.E., Leipelt, M., Heinz, E., Ott, C., Zähringer, U., Thomma, B.P., Ferket, K.K., and Cammue, B.P. (2004). Defensins from insects and plants interact with fungal glucosylceramides. J. Biol. Chem. 279, 3900–3905.

    Article  PubMed  CAS  Google Scholar 

  • Thomma, B.P., Cammue, B.P., and Thevissen, K. (2002). Plant defensins. Planta 16, 193–202.

    Article  Google Scholar 

  • Wisniewski, M.E., Bassett, C.L., Artlip, T.S., Robert, P.W., Janisiewicz, W.J., Norelli, J.I., Goldway, M., and Droby, S. (2003). Characterization of a defensin in bark and fruit tissues of peach and antimicrobial activity of a recombinant defensin in the yeast, Pichia pastoris. Physiol. Plant 119, 563–572.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yul-Ho Kim.

About this article

Cite this article

Choi, MS., Kim, YH., Park, HM. et al. Expression of BrD1, a plant defensin from Brassica rapa, confers resistance against brown planthopper (Nilaparvata lugens) in transgenic rices. Mol Cells 28, 131–137 (2009). https://doi.org/10.1007/s10059-009-0117-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-009-0117-9

Keywords

Navigation