Skip to main content

Advertisement

Log in

Acceleration of bone formation with BMP2 in frame-reinforced carbonate apatite–collagen sponge scaffolds

  • ORIGINAL ARTICLE
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

The development is expected of scaffold biomaterials that feature a shape-maintaining property in addition to high porosity and large pores that cells can easily invade. To develop a new biodegradable scaffold biomaterial reinforced with a frame, synthesized carbonate apatite (CO3Ap) was mixed with neutralized collagen gel, and the CO3Ap–collagen mixtures were lyophilized into sponges in a porous hydroxyapatite (HAp) frame ring. X-ray diffraction and Fourier transform infrared spectroscopy (FT-IR) analyses together with chemical analysis indicated that the synthesized CO3Ap had a crystalline nature and a chemical composition similar to that of bone. Scanning electron microscope (SEM) observation showed that the CO3Ap–collagen sponge had a sui pore size for cell invasion. In proliferation and differentiation experiments with osteoblasts, alkaline phosphatase and osteopontin activity were clearly detected. When these sponge–frame complexes with bone morphogenic protein (rh-BMP2) were implanted beneath the periosteum cranii of rats, significant new bone was created at the surface of the periosteum cranii after 4 weeks of implantation. These reinforced CO3Ap–collagen sponges with rh-BMP2 are expected to be used as hard tissue scaffold biomaterials for the therapeutic purpose of the rapid cure of bone defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. EB Nery KL Lynch WM Hirthe KH Mueller (1975) ArticleTitleBioceramic implant in surgically produced infrabony defects J Periodontol 46 328–347 Occurrence Handle1056997 Occurrence Handle1:STN:280:DyaE2M3htlegtw%3D%3D

    PubMed  CAS  Google Scholar 

  2. KS Ten Huisen PW Brown (1994) ArticleTitleThe formation of hydroxyapatite–gelatin composites at 38°C J Biomed Mater Res 28 27–33 Occurrence Handle10.1002/jbm.820280105 Occurrence Handle1:CAS:528:DyaK2cXit1Krtb8%3D

    Article  CAS  Google Scholar 

  3. BR Constantz IC Ison MT Fulmer RD Poser ST Smith M VanWagoner J Ross SA Goldstein JB Jupiter DI Rosenthal (1995) ArticleTitleSkeletal repair by in situ formation of the mineral phase of bone Science 267 1796–1799 Occurrence Handle7892603 Occurrence Handle10.1126/science.7892603 Occurrence Handle1:CAS:528:DyaK2MXkslWgtL0%3D

    Article  PubMed  CAS  Google Scholar 

  4. M Tanahashi T Kokubo T Nakamura Y Katsura M Nagano (1996) ArticleTitleUltrastructural study of an apatite layer formed by a biomimetic process and its bonding to bone Biomaterials 17 47–51 Occurrence Handle8962947 Occurrence Handle10.1016/0142-9612(96)80754-X Occurrence Handle1:CAS:528:DyaK28XhvFyjug%3D%3D

    Article  PubMed  CAS  Google Scholar 

  5. X Zheng M Huang C Ding (2000) ArticleTitleBond strength of plasma-sprayed hydroxyapatite/Ti composite coatings Biomaterials 21 841–849 Occurrence Handle10721753 Occurrence Handle10.1016/S0142-9612(99)00255-0 Occurrence Handle1:CAS:528:DC%2BD3cXhslKltLY%3D

    Article  PubMed  CAS  Google Scholar 

  6. H Ohgushi A Caplan (1999) ArticleTitleStem cell technology and bioceramics: from cell to gene engineering J Biomed Mater Res (Appl Biomater) 48 913–927 Occurrence Handle10.1002/(SICI)1097-4636(1999)48:6<913::AID-JBM22>3.0.CO;2-0 Occurrence Handle1:CAS:528:DyaK1MXns1yqsbw%3D

    Article  CAS  Google Scholar 

  7. C Du FZ Cui W Zhang QL Feng XD Zhu K de Groot (2000) ArticleTitleFormation of calcium phosphate/collagen composites through mineralization of collagen matrix J Biomed Mater Res 50 518–527 Occurrence Handle10756310 Occurrence Handle10.1002/(SICI)1097-4636(20000615)50:4<518::AID-JBM7>3.0.CO;2-W Occurrence Handle1:CAS:528:DC%2BD3cXislOgs74%3D

    Article  PubMed  CAS  Google Scholar 

  8. RF Service (2000) ArticleTitleTissue engineers build new bone Science 289 1498–1500 Occurrence Handle10991738 Occurrence Handle10.1126/science.289.5484.1498 Occurrence Handle1:CAS:528:DC%2BD3cXmt1KgsL4%3D

    Article  PubMed  CAS  Google Scholar 

  9. M Bokhari M Birch G Akay (2003) ArticleTitlePolyhipe polymer: a novel scaffold for in vitro bone tissue engineering Adv Exp Med Biol 534 247–254 Occurrence Handle12903724 Occurrence Handle1:CAS:528:DC%2BD3sXotlGhsLg%3D

    PubMed  CAS  Google Scholar 

  10. H Hattori K Masuoka M Sato M Ishihara T Asazuma B Takase M Kikuchi K Nemoto M Ishihara (2006) ArticleTitleBone formation using human adipose tissue-derived stromal cells and a biodegradable scaffold J Biomed Mater Res (Appl Biomater) 76B 230–239 Occurrence Handle10.1002/jbm.b.30357 Occurrence Handle1:CAS:528:DC%2BD28Xptl2lsA%3D%3D

    Article  CAS  Google Scholar 

  11. AEW Miles (1967) Structural and chemical organization of teeth, vol II Academic New York

    Google Scholar 

  12. M Okazaki Y Moriwaki T Aoba Y Doi J Takahashi (1981) ArticleTitleSolubility behavior of CO3apatites in relation to crystallinity Caries Res 15 477–483 Occurrence Handle6946861 Occurrence Handle1:STN:280:DyaL38%2FntVansg%3D%3D Occurrence Handle10.1159/000260555

    Article  PubMed  CAS  Google Scholar 

  13. M Okazaki H Ohmae T Hino (1989) ArticleTitleInsolubilization of apatite–collagen composites by UV irradiation Biomaterials 10 564–568 Occurrence Handle2557931 Occurrence Handle10.1016/0142-9612(89)90064-1 Occurrence Handle1:CAS:528:DyaK3cXisFGrsw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  14. M Okazaki H Ohmae J Takahashi H Kimura M Sakuda (1990) ArticleTitleInsolubilized properties of UV-irradiated CO3apatite–collagen composites Biomaterials 11 568–572 Occurrence Handle2177659 Occurrence Handle10.1016/0142-9612(90)90080-A Occurrence Handle1:CAS:528:DyaK3MXovVGqug%3D%3D

    Article  PubMed  CAS  Google Scholar 

  15. Y Yamasaki Y Yoshida M Okazaki A Shimazu T Uchida T Kubo Y Akagawa Y Hamada J Takahashi N Matsuura (2002) ArticleTitleSynthesis of functionally graded MgCO3apatite accelerating osteoblast adhesion J Biomed Mater Res 62 99–105 Occurrence Handle12124791 Occurrence Handle10.1002/jbm.10220 Occurrence Handle1:CAS:528:DC%2BD38Xmt1ejurw%3D

    Article  PubMed  CAS  Google Scholar 

  16. Y Yamasaki Y Yoshida M Okazaki A Shimazu T Kubo Y Akagawa T Uchida (2003) ArticleTitleAction of FGMgCO3Ap–collagen composite in promoting bone formation Biomaterials 24 4913–4920 Occurrence Handle14559004 Occurrence Handle10.1016/S0142-9612(03)00414-9 Occurrence Handle1:CAS:528:DC%2BD3sXotVSjsrs%3D

    Article  PubMed  CAS  Google Scholar 

  17. H Ohgushi VM Goldberg AI Caplan (1989) ArticleTitleHeterotopic osteogenesis in porous ceramics induced by marrow cells J Orthop Res 7 568–578 Occurrence Handle2544711 Occurrence Handle10.1002/jor.1100070415 Occurrence Handle1:STN:280:DyaL1M3ptlCrsg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  18. M Itoh A Shimazu I Hirata Y Yoshida H Shintani M Okazaki (2004) ArticleTitleCharacterization of CO3Ap–collagen sponges using X-ray high-resolution microtomography Biomaterials 25 2577–2583 Occurrence Handle14751743 Occurrence Handle10.1016/j.biomaterials.2003.09.071 Occurrence Handle1:CAS:528:DC%2BD2cXmtFChsw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  19. AA Ignatius M Ohnmacht LE Claes JP Kreidler F Palm (2001) ArticleTitleA composite polymer/tricalcium phosphate membrane for guided bone regeneration in maxillofacial surgery J Biomed Mater Res 58 564–569 Occurrence Handle11505432 Occurrence Handle10.1002/jbm.1055 Occurrence Handle1:CAS:528:DC%2BD3MXntFahu7o%3D

    Article  PubMed  CAS  Google Scholar 

  20. Y Tieliewuhan I Hirata A Sasaki H Minagi M Okazaki (2004) ArticleTitleOsteoblast proliferation behavior and bone formation on and in CO3apatite-collagen sponges reinforced with a porous hydroxyapatite frame Dent Mater J 23 258–264 Occurrence Handle15510851

    PubMed  Google Scholar 

  21. JE Eastoe (1965) Method for the determination of phosphate calcium and protein in small portions of mineralized tissues University of Liege Liege

    Google Scholar 

  22. EJ Conway (1950) Microdiffusion analysis and volumetric error EditionNumber3rd ed Van Nostrand New York

    Google Scholar 

  23. LeGeros RZ. Apatites from aqueous and nonaqueous systems: relation to biological apatites. Proceedings of First International Congress on Phosphorus Compounds, Rabat, 1977;347–360

  24. RZ LeGeros (1991) Calcium phosphates in oral biology and medicine: Monographs in oral science, vol 15 (Myers HM, series editor) Karger Basel

    Google Scholar 

  25. B Albert D Bray J Lewis M Raff K Roberts JD Watson (1994) Molecular biology of the cell EditionNumber3rd ed Garland New York

    Google Scholar 

  26. I Hirata Y Nomura H Tabata Y Miake T Yanagisawa M Okazaki (2005) ArticleTitleSEM observation of collagen fibrils secreted from the body surface of osteoblasts on a CO3apatite–collagen sponge Dent Mater J 24 460–464 Occurrence Handle16279740 Occurrence Handle1:CAS:528:DC%2BD2MXht1CrsbjP

    PubMed  CAS  Google Scholar 

  27. MR Urist (1965) ArticleTitleBone: formation by autoinduction Science 150 893–899 Occurrence Handle5319761 Occurrence Handle10.1126/science.150.3698.893 Occurrence Handle1:STN:280:DyaF28%2FhvFekuw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  28. Y Jiang BN Jahagirdar RL Reinhardt RE Schwartz CD Keene XR Ortiz-Gonzalez M Reyes T Lenvik T Lund M Blackstad J Du S Aldrich A Lisberg WC Low DA Largaespada CM Verfaillie (2002) ArticleTitlePluripotency of mesenchymal stem cells derived from adult marrow Nature 418 41–49 Occurrence Handle12077603 Occurrence Handle10.1038/nature00870 Occurrence Handle1:CAS:528:DC%2BD38XltVantrs%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Okazaki PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirata, I., Nomura, Y., Ito, M. et al. Acceleration of bone formation with BMP2 in frame-reinforced carbonate apatite–collagen sponge scaffolds. J Artif Organs 10, 212–217 (2007). https://doi.org/10.1007/s10047-007-0391-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-007-0391-2

Key words

Navigation