Skip to main content

Advertisement

Log in

Bone-mimetic porous hydroxyapatite/whitlockite scaffolds: preparation, characterization and interactions with human mesenchymal stem cells

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bone-mimetic highly porous Mg-substituted calcium phosphate scaffolds, composed of hydroxyapatite (HAP) and whitlockite (WH), were synthesized by hydrothermal method at 200 °C, using calcium carbonate skeletons of cuttlefish bone, ammonium dihydrogenphosphate (NH4H2PO4) and magnesium chloride hexahydrate (MgCl2 × 6H2O) or magnesium perchlorate (Mg(ClO4)2) as reagents. The effect of Mg content on the compositional and morphological properties of scaffolds was studied by means of X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy (SEM) with energy-dispersive X-ray analysis. Structural refinements performed by Rietveld method indicated that Mg2+ ions were preferentially incorporated into the WH phase. SEM images of all prepared scaffolds showed that the interconnected structure of the cuttlefish bone was completely maintained after the hydrothermal synthesis. Results of compression tests showed a positive impact of the whitlockite phase on the mechanical properties of scaffolds. Human mesenchymal stem cells (hMSCs) were cultured on scaffolds in osteogenic medium for 21 days. Immunohistochemical staining showed that Mg-CaP scaffolds with the HAP:WH wt ratio of 90:10 and 70:30 exhibited higher expression of collagen type I and osteocalcin than pure HAP scaffold. Calcium deposition was confirmed by Alizarin Red staining. Positive effect of Mg2+ ions on the differentiation of hMSCs on porous 3D scaffolds was also confirmed by reverse transcription-quantitative polymerase chain reaction analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Dorozhkin SV (2009) Calcium orthophosphates in nature, biology and medicine. Materials 2:399–498

    CAS  Google Scholar 

  2. Dorozhkin SV (2010) Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater 6:715–734

    CAS  Google Scholar 

  3. Wang L, Nancollas GH (2008) Calcium orthophosphates: crystallization and dissolution. Chem Rev 108:4628–4669

    CAS  Google Scholar 

  4. Le Geros RZ (2008) Calcium phosphate-based osteoinductive materials. Chem Rev 108:4742–4753

    Google Scholar 

  5. Boanini E, Gazzano M, Bigi A (2010) Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater 6:1882–1894

    CAS  Google Scholar 

  6. Shepherd JH, Shepherd DV, Best SM (2012) Substituted hydroxyapatites for bone repair. J Mater Sci Mater Med 23:2335–2347

    CAS  Google Scholar 

  7. Supova M (2015) Substituted hydroxyapatites for biomedical applications: a review. Ceram Int 41:9203–9231

    CAS  Google Scholar 

  8. Tite T, Popa AC, Balescu LM, Bogdan IM, Pasuk I, Ferreira JMF, Stan GE (2018) Cationic substitutions in hydroxyapatite: current status of the derived biofunctional effects and their in vitro interrogation methods. Materials 11(11):2081. https://doi.org/10.3390/ma11112081

    Article  CAS  Google Scholar 

  9. Si L, Zhang W, Jiang X (2019) Applications of bioactive ions in bone regeneration. Chin J Dent Res 22:93–104

    Google Scholar 

  10. Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S (2008) Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour. J Mater Sci Mater Med 19:239–247

    CAS  Google Scholar 

  11. Ren F, Leng Y, Xin R, Ge X (2010) Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomater 6:2787–2796

    CAS  Google Scholar 

  12. Farzadi A, Bakhshi F, Solati-Hashjin M, Asadi-Eydivand M, Osman NAA (2014) Magnesium incorporated hydroxyapatite: synthesis and structural properties characterization. Ceram Int 40:6021–6029

    CAS  Google Scholar 

  13. Yuan XY, Zhu BS, Tong GS, Su Y, Zhu XY (2013) Wet-chemical synthesis of Mg-doped hydroxyapatite nanoparticles by step reaction and ion exchange processes. J Mater Chem B 1:6551–6559

    CAS  Google Scholar 

  14. Cox SC, Jamshidi P, Grover LM, Mallick KK (2014) Preparation and characterisation of nanophase Sr, Mg, and Zn substituted hydroxyapatite by aqueous precipitation. Mater Sci Eng C Mater Biol Appl 35:106–114

    CAS  Google Scholar 

  15. Stipniece L, Salma-Ancane K, Borodajenko N, Sokolova M, Jakovlevs D, Berzina-Cimdina L (2014) Characterization of Mg-substituted hydroxyapatite synthesized by wet chemical method. Ceram Int 40:3261–3267

    CAS  Google Scholar 

  16. Stipniece L, Narkevica I, Salma-Ancane K (2017) Low-temperature synthesis of nanocrystalline hydroxyapatite: effect of Mg and Sr content. J Am Ceram Soc 100:1697–1706

    CAS  Google Scholar 

  17. Suchanek WL, Byrappa K, Shuk P, Riman RE, Janas VF, TenHuisen KS (2004) Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method. Biomaterials 25:4647–4657

    CAS  Google Scholar 

  18. Batra U, Kapoor S, Sharma S (2013) Influence of magnesium ion substitution on structural and thermal behaviour of nanodimensional hydroxyapatite. J Mater Eng Perform 22:1798–1806

    CAS  Google Scholar 

  19. Neuman WF, Mulryan BJ (1971) Synthetic hydroxyapatite crystals. Cal Tissue Res 7(1):133–138

    CAS  Google Scholar 

  20. Bigi A, Falini G, Foresti E, Gazzano M, Ripamonti A, Roveri N (1993) Magnesium influence on hydroxyapatite crystallization. J Inorg Biochem 49:69–78

    CAS  Google Scholar 

  21. Laurencin D, Almora-Barrios N, de Leeuw NH, Gervais C, Bonhomme C, Mauri F, Chrzanowski W, Knowles JC, Newport RJ, Wong A, Gan ZE, Smith ME (2011) Magnesium incorporation into hydroxyapatite. Biomaterials 32:1826–1837

    CAS  Google Scholar 

  22. Jang HL, Jin K, Lee J, Kim Y, Nahm SH, Hong KS, Nam KT (2013) Revisiting whitlockite, the second most abundant biomineral in bone: nanocrystal synthesis in physiologically relevant conditions and biocompatibility evaluation. ACS Nano 8:634–641

    Google Scholar 

  23. Jang HL, Lee HK, Jin K, Ahn HY, Lee HE, Nam KT (2015) Phase transformation from hydroxyapatite to the secondary bone mineral, whitlockite. J Mater Chem B 3:1342–1349

    CAS  Google Scholar 

  24. Elliott JC (2013) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam

    Google Scholar 

  25. Driessens FC, Verbeeck R (1990) Biominerals. CRC Press, Florida

    Google Scholar 

  26. Calvo C, Gopal R (1975) Crystal-structure of whitlockite from Palermo Quarry. Am Mineral 60:120–133

    CAS  Google Scholar 

  27. Gopal R, Calvo C (1972) Structural relationship of whitlockite and β-Ca3(PO4)2. Nat Phys Sci 237:30–32

    CAS  Google Scholar 

  28. Jang HL, Zheng GB, Park J, Kim HD, Baek HR, Lee HK, Lee K, Han HN, Lee CK, Hwang NS, Lee JH, Nam KT (2016) In vitro and in vivo evaluation of whitlockite biocompatibility: comparative study with hydroxyapatite and β-tricalcium phosphate. Adv Healthc Mater 5:128–136

    CAS  Google Scholar 

  29. Kim HD, Jang HL, Ahn HY, Lee HK, Park J, Lee ES, Lee EA, Jeong YH, Kim DG, Nam KT (2017) Biomimetic whitlockite inorganic nanoparticles-mediated in situ remodeling and rapid bone regeneration. Biomaterials 112:31–43

    CAS  Google Scholar 

  30. Yoshizawa S, Brown A, Barchowsky A, Sfeir C (2014) Role of magnesium ions on osteogenic response in bone marrow stromal cells. Connect Tissue Res 55:155–159

    CAS  Google Scholar 

  31. Chaudhry AA, Goodall JBM, Vickers M, Cockcroft JK, Rehman IU, Knowles JC, Darr JA (2008) Synthesis and characterisation of magnesium substituted calcium phosphate bioceramic nanoparticles made via continuous hydrothermal flow synthesis. J Mater Chem 18:5900–5908

    CAS  Google Scholar 

  32. Luna-Domínguez JH, Téllez-Jiménez H, Hernández-Cocoletzi H, García-Hernández M, Melo-Banda JA, Nygren H (2018) Development and in vivo response of hydroxyapatite/whitlockite from chicken bones as bone substitute using a chitosan membrane for guided bone regeneration. Ceram Int 44:22583–22591

    Google Scholar 

  33. Cheng H, Chabok R, Guan XF, Chawla A, Li YX, Khademhosseini A, Jang HL (2018) Synergistic interplay between the two major bone minerals, hydroxyapatite and whitlockite nanoparticles, for osteogenic differentiation of mesenchymal stem cells. Acta Biomater 69:342–351

    CAS  Google Scholar 

  34. Ivanković H, Gallego Ferrer G, Tkalčec E, Orlić S, Ivanković M (2009) Preparation of highly porous hydroxyapatite from cuttlefish bone. J Mater Sci Mater Med 20:1039–1046

    Google Scholar 

  35. Milovac D, Gallego Ferrer G, Ivanković M, Ivanković H (2014) PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity. Mater Sci Eng C 34:437–445

    CAS  Google Scholar 

  36. Milovac D, Gamboa-Martinez TC, Ivanković M, Gallego Ferrer G, Ivanković H (2014) PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: in vitro cell culture studies. Mater Sci Eng C 42:264–272

    CAS  Google Scholar 

  37. Rogina A, Antunović M, Milovac D (2019) Biomimetic design of bone substitutes based on cuttlefish bone-derived hydroxyapatite and biodegradable polymers. J Biomed Mater Res B 107:197–204

    CAS  Google Scholar 

  38. Ressler A, Cvetnić M, Antunović M, Marijanović I, Ivanković M, Ivanković H (2020) Strontium substituted biomimetic calcium phosphate system derived from cuttlefish bone. J Biomed Mater Res B 108:1697–1709

    CAS  Google Scholar 

  39. TOPAS V4 (2002) General profile and structure analysis software for powder diffraction data-user’s manual. Bruker AXS, Karlsruhe

    Google Scholar 

  40. Sudarsanan K, Young RA (1969) Significant precision in crystal structural details: holly springs hydroxyapatite. Acta Crystallogr B 25:1534–1543

    CAS  Google Scholar 

  41. Coelho A (2000) Whole profile structure solution from powder diffraction data using simulated annealing. J Appl Cryst 33:899–908

    CAS  Google Scholar 

  42. Gopal R, Calvo C, Ito J, Sabine WK (1974) Crystal structure of synthetic Mg-whitlockite, Ca18Mg2H2(PO4)14. Can J Chem 52:1155–1164

    CAS  Google Scholar 

  43. Caspi EN, Pokroy B, Lee PL, Quintana JP, Zolotoyabko E (2005) On the structure of aragonite. Acta Crystallogr B 61:129–132

    CAS  Google Scholar 

  44. Matić I, Antunović M, Brkić S, Josipović P, Mihalić KC, Karlak I, Ivković A, Marijanović I (2016) Expression of OCT-4 and SOX-2 in bone marrow-derived human mesenchymal stem cells during osteogenic differentiation. Open Access Maced J Med Sci 4:9–16

    Google Scholar 

  45. Rogina A, Antunović M, Pribolšan L, Caput Mihalić K, Vukasović A, Ivković A, Marijanović I, Gallego Ferrer G, Ivanković M, Ivanković H (2017) Human mesenchymal stem cells differentiation regulated by hydroxyapatite content within chitosan-based scaffolds under perfusion conditions. Polymers 9(9):387. https://doi.org/10.3390/polym9090387

    Article  CAS  Google Scholar 

  46. Zyman Z, Tkachenko M, Epple M, Polyakov M, Naboka M (2006) Magnesium-substituted hydroxyapatite ceramics. Materialwiss Werkstofftech 37:474–477

    CAS  Google Scholar 

  47. Mehrjoo M, Javadpour J, Shokrgozar MA, Farokhi M, Javadian S, Bonakdar S (2015) Effect of magnesium substitution on structural and biological properties of synthetic hydroxyapatite powder. Mater Expr 5:41–48

    CAS  Google Scholar 

  48. Aina V, Lusvardi G, Annaz B, Gibson IR, Imrie FE, Malavasi G, Menabue L, Cerrato G, Martra G (2012) Magnesium- and strontium-co-substituted hydroxyapatite: the effects of doped-ions on the structure and chemico-physical properties. J Mater Sci Mater Med 23:2867–2879

    CAS  Google Scholar 

  49. LeGeros RZ (1991) Calcium phosphates in oral biology and medicine. In: LeGeros RZ, Myers HM (eds) Monographs in Oral Sciences. Karger, Basel, pp 37–58

    Google Scholar 

  50. El Feki H, Rey C, Vignoles M (1991) Carbonate ions in apatites: infrared investigations in the v4 CO3 domain. Calcif Tissue Int 49:269–274

    Google Scholar 

  51. Elliott JC, Holcomb DW, Young RA (1985) Infrared determination of the degree of substitution of hydroxyl by carbonate ions in human dental enamel. Calcif Tissue Int 37:372–375

    CAS  Google Scholar 

  52. Rey C, Collins B, Goehl T, Dickson IR, Glimcher MJ (1989) The carbonate environment in bone-mineral—a resolution enhanced Fourier-transform infrared-spectroscopy study. Calcif Tissue Int 45:157–164

    CAS  Google Scholar 

  53. Bonel G (1972a) Contribution a l’etude de la carbonation des apatites. Part I Ann Chim 7:65–87

    CAS  Google Scholar 

  54. Bonel G (1972b) Contribution a l’etude de la carbonation des apatites. Parts II and III Ann Chim 7:127–144

    CAS  Google Scholar 

  55. Grunenwald A, Keyser C, Sautereau AM, Crubézy E, Ludes B, Drouet C (2014) Revisiting carbonate quantification in apatite (bio)minerals: a validated FTIR methodology. J Archaeol Sci 49:134–141

    CAS  Google Scholar 

  56. Rocha JHG, Lemos AF, Agathopoulos S, Kannan S, Valério P, Ferreira JMF (2006) Hydrothermal growth of hydroxyapatite scaffolds from aragonitic cuttlefish bones. J Biomed Mater Res Part A 77:160–168

    CAS  Google Scholar 

  57. Leventouri T (2006) Synthetic and biological hydroxyapatites: crystal structure questions. Biomaterials 27:3339–3342

    CAS  Google Scholar 

  58. Tkalčec E, Popović J, Orlić S, Milardović S, Ivanković H (2014) Hydrothermal synthesis and thermal evolution of carbonate-fluorhydroxyapatite scaffold from cuttlefish bones. Mater Sci Eng C 42:578–586

    Google Scholar 

  59. Bigi A, Cojazzi G, Panzavolta S, Ripamonti A, Roveri N, Romanello M, Suarez KN, Moro L (1997) Chemical and structural characterization of the mineral phase from cortical and trabecular bone. J Inorg Biochem 68:45–51

    CAS  Google Scholar 

  60. Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mater Sci Eng C 25:131–143

    Google Scholar 

  61. Ellies LG, Carter JM, Natiella JR, Featherstone JDB, Nelson DGA (1988) Quantitative analysis of early in vivo tissue response to synthetic apatite implants. J Biomed Mater Res A 22:137–148

    CAS  Google Scholar 

  62. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491

    CAS  Google Scholar 

  63. Tampieri A, Celotti GC, Landi E, Sandri M (2004) Magnesium doped hydroxyapatite: synthesis and characterization. Key Eng Mater 264:2051–2054

    Google Scholar 

  64. Tas AC (2016) Transformation of Brushite (CaHPO4· 2H2O) to Whitlockite (Ca9Mg(HPO4)(PO4)6) or other CaPs in physiologically relevant solutions. J Am Ceram Soc 99:1200–1206

    CAS  Google Scholar 

  65. Qi C, Chen F, Wu J, Zhu Y-J, Hao C-N, Duan J-L (2016) Magnesium whitlockite hollow microspheres: a comparison of microwave-hydrothermal and conventional hydrothermal syntheses using fructose 1,6-bisphosphate, and application in protein adsorption. RSC Adv 6:33393–33402

    CAS  Google Scholar 

  66. Qi C, Zhu YJ, Lu BQ, Zhao XY, Zhao J, Chen F, Wu J (2013) Hydroxyapatite hierarchically nanostructured porous hollow microspheres: rapid, sustainable microwave-hydrothermal synthesis by using creatine phosphate as an organic phosphorus source and application in drug delivery and protein adsorption. Chem Eur J 19:5332–5341

    CAS  Google Scholar 

  67. Mouriño V, Cattalini JP, Boccaccini AR (2012) Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R. Soc Interface 9:401–419

    Google Scholar 

  68. Li QQ, Gao ZW, Chen Y, Guan MX (2017) The role of mitochondria in osteogenic, adipogenic and chondrogenic differentiation of mesenchymal stem cells. Protein Cell 28:439–445

    Google Scholar 

  69. Takeuchi Y, Suzawa M, Kikuchi T, Nishida E, Fujita T, Matsumoto T (1997) Differentiation and transforming growth factor-β receptor down-regulation by collagen-α2β1 integrin interaction is mediated by focal adhesion kinase and its downstream signals in murine osteoblastic cells. J Biol Chem 272:29309–29316

    CAS  Google Scholar 

  70. Kundu AK, Putnam AJ (2006) Vitronectin and collagen I differentially regulate osteogenesis in mesenchymalstem cells. Biochem Biophy Res Commun 347:347–357

    CAS  Google Scholar 

  71. Stein GS, Lian JB, Stein JL, Van Wijnen AJ, Montecino M (1996) Transcriptional control of osteoblast growth and differentiation. Physiol Rev 76:593–629

    CAS  Google Scholar 

  72. Stein GS, Lian JB, Van Wijnen AJ, Stein JL (1997) The osteocalcin gene: A model for multiple parameters of skeletal-specific transcriptional control. Mol Biol Rep 24:185–196

    CAS  Google Scholar 

  73. Gundberg CM (2000) Biochemical markers of bone formation. Clin Lab Med 20:489–501

    CAS  Google Scholar 

  74. Golub EE, Boesze-Battaglia K (2007) The role of alkaline phosphatase in mineralization. Curr Opin Orthop 18:444–448

    Google Scholar 

  75. Rad MR, Liu D, He H, Brooks H, Xiao M, Wise GE, Yao S (2015) The role of dentin matrix protein 1 (DMP1) in regulation of osteogenic differentiation of rat dental follicle stem cells (DFSCs). Arch Oral Biol 60:546–556

    Google Scholar 

  76. Gordon JA, Tye CE, Sampaio AV, Underhill TM, Hunter GK, Goldberg HA (2007) Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro. Bone 41:462–473

    CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Croatian Science Foundation under the project IP-2014-09-3752.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard Bauer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Bone marrow-derived hMSCs were used with approval from the Ethical Committee of the University Hospital of Traumatology Zagreb, Croatia, after the written informed consent from donor patients.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, L., Antunović, M., Rogina, A. et al. Bone-mimetic porous hydroxyapatite/whitlockite scaffolds: preparation, characterization and interactions with human mesenchymal stem cells. J Mater Sci 56, 3947–3969 (2021). https://doi.org/10.1007/s10853-020-05489-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05489-3

Navigation