Skip to main content
Log in

High-resolution vertical profiles of groundwater electrical conductivity (EC) and chloride from direct-push EC logs

Profils verticaux de conductivité électrique de l’eau souterraine à haute résolution (EC) et des chlorures à partir de diagraphies EC par poussée directe

Perfiles verticales de alta resolución de la conductividad eléctrica (EC) y cloruro en el agua subterránea a partir de los registros de EC por impulso directo

地下水电导率高分辨率垂直剖面及从直推电导率录井得出的氯化物

Perfis verticais de alta resolução para condutividade elétrica (CE) e cloreto das águas subterrâneas a partir de registros de CE por cravação contínua

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Elevated groundwater salinity associated with produced water, leaching from landfills or secondary salinity can degrade arable soils and potable water resources. Direct-push electrical conductivity (EC) profiling enables rapid, relatively inexpensive, high-resolution in-situ measurements of subsurface salinity, without requiring core collection or installation of groundwater wells. However, because the direct-push tool measures the bulk EC of both solid and liquid phases (ECa), incorporation of ECa data into regional or historical groundwater data sets requires the prediction of pore water EC (ECw) or chloride (Cl) concentrations from measured ECa. Statistical linear regression and physically based models for predicting ECw and Cl from ECa profiles were tested on a brine plume in central Saskatchewan, Canada. A linear relationship between ECa/ECw and porosity was more accurate for predicting ECw and Cl concentrations than a power-law relationship (Archie’s Law). Despite clay contents of up to 96%, the addition of terms to account for electrical conductance in the solid phase did not improve model predictions. In the absence of porosity data, statistical linear regression models adequately predicted ECw and Cl concentrations from direct-push ECa profiles (ECw = 5.48 ECa + 0.78, R 2 = 0.87; Cl = 1,978 ECa – 1,398, R 2 = 0.73). These statistical models can be used to predict ECw in the absence of lithologic data and will be particularly useful for initial site assessments. The more accurate linear physically based model can be used to predict ECw and Cl as porosity data become available and the site-specific ECw–Cl relationship is determined.

Résumé

Une salinité élevée de l’eau souterraine associée à l’eau prélevée, le lessivage de décharges ou une salinité secondaire peuvent dégrader les sols cultivables et les ressources en eau potable. Les diagraphies de la conductivité électrique (EC) par poussée directe permettent des mesures in situ de salinité de subsurface rapides, relativement peu coûteuses et à haute résolution, sans recourir au prélèvement de carottes ou au creusement de forages d’eau. Cependant, du fait que l’outil par poussée directe mesure l’EC dans sa globalité à la fois des phases solide et liquide (ECa), l’incorporation des données (ECa) dans l’ensemble des données régionales ou historiques hydrogéologiques nécessite la prédiction de l’EC de l’eau porale (ECw) ou des concentrations en chlorures (Cl) à partir des données ECa mesurées. Une régression linéaire statistique et des modèles à base physique pour prédire ECw et Cl à partir des diagraphies d’ECa ont été testés sur un panache d’eau sursalée en Saskatchewan central au Canada. Pour prédire les concentrations ECw et Cl, une relation linéaire entre le rapport ECa/ECw et la porosité était plus précise qu’une loi de puissance (Loi d’Archie). Malgré des concentrations en argile s’élevant à 96%, l’addition de termes pour tenir compte de la conductivité électrique de la phase solide n’a pas amélioré les prédictions du modèle. En l’absence de données sur la porosité, des modèles de régression statistique linéaire ont prédit de façon adéquate ECw et les concentrations Cl à partir des diagraphies par poussée directe d’ECa (ECw = 5.48 ECa + 0.78, R 2 = 0.87; Cl = 1,978 ECa – 1,398, R 2 = 0.73). Ces modèles statistiques peuvent être utilisés pour prévoir ECw en l’absence de données lithologiques et ils seront particulièrement utiles pour les évaluations initiales d’un site. Le modèle linéaire à base physique le plus précis peut être utilisé pour prédire ECw et Cl lorsque les données sur la porosité sont disponibles et que la relation ECw–Cl propre au site est. déterminée.

Resumen

La elevada salinidad del agua subterránea asociada con el agua producida, la lixiviación de los vertederos o la salinidad secundaria pueden degradar los suelos cultivables y los recursos de agua potable. El perfilado de conductividad eléctrica por impulso directo (EC) permite rápidas mediciones in situ, relativamente de bajo costo y de alta resolución en la salinidad subterránea, sin requerir la recolección de testigos o la instalación de pozos de agua subterránea. Sin embargo, debido a que la herramienta por impulso directo mide la EC en masa tanto de las fases sólida como líquida (ECa), la incorporación de datos (ECa) en conjuntos de datos regionales o históricos de agua subterránea requiere la predicción de las concentraciones EC (ECw) del agua poral ó de la concentración de cloruro (Cl), a partir de la ECa medida. Se probaron modelos estadísticos de regresión lineal y de bases físicas para predecir ECw y Cl a partir de los perfiles de ECa en una pluma de salmuera en el centro de Saskatchewan, Canadá. Una relación lineal entre ECa/ECw y la porosidad fue más precisa para predecir las concentraciones ECw y Cl que una relación de una ley potencial (Ley de Archie). A pesar de un contenido de arcilla de hasta 96%, la adición de términos para contabilizar la conductividad eléctrica en la fase sólida no mejoró las predicciones del modelo. En ausencia de datos de porosidad, los modelos estadísticos de regresión lineal predijeron adecuadamente las concentraciones de ECw and Cl de los perfiles de impulso directo de ECa (ECw = 5.48 ECa + 0.78, R 2 = 0.87; Cl = 1,978 ECa – 1,398, R 2 = 0.73). Estos modelos estadísticos se pueden utilizar para predecir ECw en ausencia de datos litológicos y será particularmente útil para las evaluaciones iniciales de un sitio. El modelo físico lineal más preciso puede usarse para predecir ECw y Cl cuando los datos de porosidad estén disponibles y se determine la relación ECw–Cl específica del sitio.

摘要

与产生的水、垃圾场滤淋或者次生盐性相关的地下水盐度增加可使耕地退化及可饮用水资源质量变差。直推电导率(EC)剖面制图可快速地、成本相对低廉地对地表之下的盐度进行高分辨率的现场测量,而无需采集岩心或者布设地下水井。然而,由于直推工具测量固相和液相(ECa)的整体电导率,因此,固相和液相(ECa)数据并入到区域或历史地下水数据集中需要预测孔隙水的电导率(ECw)或测量的固相和液相中氯化物含量。在加拿大Saskatchewan中部一个咸水羽状区域,对预测固相和液相(ECa)剖面孔隙水电导率和氯化物的统计线性回归和基于物理的模型进行了测试。在预测ECw及Cl含量时,ECa/ECw与孔隙度之间的线性关系比幂律(Archie定律)关系更精确。尽管粘土含量高达96%,增加说明固相中电导率的项并没有改善模型预测结果。在缺少孔隙度数据的情况下,统计线性回归模型根据直推ECa剖面(ECw = 5.48 ECa + 0.78, R 2 = 0.87; Cl = 1,978 ECa – 1398, R 2 = 0.73)充分地预测了ECw and Cl含量。这些统计模型可在缺少岩性数据的情况下用于预测ECw,对于最初的场地评价尤其有用。随着拥有孔隙度数据,更精确度线性基于物理的模型可用于预测ECw 和 Cl,以及场地特定的ECw–Cl 相互关系可以确定。

Resumo

A salinidade elevada nas águas subterrâneas associadas às águas residuárias, lixiviadas dos aterros ou salinidade secundária podem degradar solos aráveis e recursos hídricos potáveis. O perfilamento da condutividade elétrica (CE) por cravação contínua permite medidas rápidas, relativamente baratas, de alta resolução in situ da salinidade subsuperficial, sem requerer coletas de testemunhos ou instalação de poços de água subterrânea. No entanto, pela ferramenta de cravação contínua medir o volume CE de ambas as fases solida e liquida (CEa), a incorporação dos dados de CEa no conjunto de dados de águas subterrâneas regionais ou históricas requer a predição da CE na água contida nos poros (CEw) ou concentrações de cloreto (Cl) das CEa medidas. Regressão linear estatística e modelos baseados em aspectos físicos para predizer CEw e Cl de perfis CEa foram testados em uma pluma de salmoura no centro de Saskatchewan, Canadá. Uma relação entre CEa/CEw e porosidade foi mais precisa para predizer concentrações CEw e Cl que a relação da lei de potência (Lei de Archie). Apesar do conteúdo de argila superior a 96%, a adição de tais termos para o cálculo da condutividade elétrica na fase sólida não melhorou as predições do modelo. Na ausência dos dados de porosidade, os modelos de regressão linear estatística adequadamente predisseram as concentrações de CEw e Cl dos perfis de cravação contínua CEa (CEw = 5.48 CEa + 0.78, R 2 = 0.87; Cl = 1,978 CEa – 1,398, R 2 = 0.73). Esses modelos estatísticos podem ser usados para predizer CEw na ausência de dados litológicos e serão particularmente uteis para avaliações iniciais do local. O modelo linear baseado em aspectos físicos mais preciso pode ser utilizado para predizer CEw e Cl assim que os dados de porosidade estiverem disponíveis e a relação especifica do local for determinada.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Al-Tarazi E, Abu Rajab J, Al-Naqa A, El-Waheidi M (2008) Detecting leachate plumes and groundwater pollution at Ruseifa municipal landfill utilizing VLF-EM method. J Appl Geophys 65:121–131. doi:10.1016/j.jappgeo.2008.06.005

    Article  Google Scholar 

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146:54–62

    Article  Google Scholar 

  • Bohn HL, Ben-Asher J, Tabbara HS, Marwan M (1982) Theories and tests of electrical conductivity in soils. Soil Sci Soc Am J 46:1143–1146

    Article  Google Scholar 

  • Christiansen E (1992) Pleistocene stratigraphy of the Saskatoon area: Saskatchewan, Canada—an update. Can J Earth Sci 29:1767–1778

    Article  Google Scholar 

  • Di Stefano C, Ferro V, Mirabile S (2010) Comparison between grain-size analyses using laser diffraction and sedimentation methods. Biosyst Eng 106:205–215

    Article  Google Scholar 

  • Fakhru’l-Razi A, Pendashteh A, Abdullah LC, Biak DRA, Madaeni SS, Abidin ZZ (2009) Review of technologies for oil and gas produced water treatment. J Hazard Mater 170:530–551. doi:10.1016/j.jhazmat.2009.05.044

    Article  Google Scholar 

  • Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, extent, management and case studies. CABI, Wallingford, UK

    Google Scholar 

  • Goldstein NE, Benson SM, Alumbaugh D (1990) Saline groundwater plume mapping with electromagnetics. Geotech Environ Geophys 2:17–25

    Google Scholar 

  • Greenhouse JP, Slaine DD (1983) The use of reconnaissance electromagnetic methods to map contaminant migration. Groundwater Monit Rem 3:47–59

    Article  Google Scholar 

  • Halvorson A, Rhoades J, Reule C (1977) Soil salinity: four-electrode conductivity relationships for soils of the northern Great Plains. Soil Sci Soc Am J 41:966–971

    Article  Google Scholar 

  • Harrington GA, Hendry MJ (2006) Using direct-push EC logging to delineate heterogeneity in a clay-rich aquitard. Groundwater Monit Rem 26:92–100

    Article  Google Scholar 

  • Hautman DP, Munch DJ (1997) Method 300.1 determination of inorganic anions in drinking water by ion chromatography. US Environmental Protection Agency, Cincinnati, OH

    Google Scholar 

  • Hayashi M (2004) Temperature-electrical conductivity relation of water for environmental monitoring and geophysical data inversion. Environ Monit Assess 96:119–128

    Article  Google Scholar 

  • Hendry MJ, Barbour SL, Novakowski K, Wassenaar LI (2013) Paleohydrogeology of the cretaceous sediments of the Williston Basin using stable isotopes of water. Water Resour Res 49:4580–4592

    Article  Google Scholar 

  • Huang J, Prochazka MJ, Triantafilis J (2016) Irrigation salinity hazard assessment and risk mapping in the lower Macintyre Valley. Australia, Sci Tot Environ 551–552:460–473. doi:10.1016/j.scitotenv.2016.01.200

    Article  Google Scholar 

  • Loveday J (1980) Experiences with the 4-electrode resistivity technique for measuring soil salinity in situ. Divisional report-CSIRO Division of Soils (Australia) no. 51, CISRO, Canberra, Australia

  • McKay LD, Gillham RW, Cherry JA (1993) Field experiments in a fractured clay till: 2. solute and colloid transport. Water Resour Res 29:3879–3890

    Article  Google Scholar 

  • Mor S, Ravindra K, Dahiya RP, Chandra A (2006) Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site. Environ Monit Assess 118:435–456. doi:10.1007/s10661-006-1505-7

    Article  Google Scholar 

  • Paine JG (2003) Determining salinization extent, identifying salinity sources, and estimating chloride mass using surface, borehole, and airborne electromagnetic induction methods. Water Resour Res 39. doi:10.1029/2001WR000710

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Botany 57:1017–1023

    Article  Google Scholar 

  • Rhoades J, Manteghi N, Shouse P, Alves W (1989) Soil electrical conductivity and soil salinity: new formulations and calibrations. Soil Sci Soc Am J 53:433–439

    Article  Google Scholar 

  • Schofield NJ, Ruprecht JK (1989) Regional analysis of stream salinisation in southwest Western Australia. J Hydrol 112:19–39

    Article  Google Scholar 

  • Schulmeister M, Butler J, Healey J, Zheng L, Wysocki D, McCall G (2003) Direct-push electrical conductivity logging for high-resolution hydrostratigraphic characterization. Groundwater Monit Rem 23:52–62

    Article  Google Scholar 

  • Shainberg I, Rhoades J, Prather R (1980) Effect of exchangeable sodium percentage, cation exchange capacity, and soil solution concentration on soil electrical conductivity. Soil Sci Soc Am J 44:469–473

    Article  Google Scholar 

  • Shaw RJ, Hendry MJ (1998) Hydrogeology of a thick clay till and Cretaceous clay sequence, Saskatchewan, Canada. Can Geotech J 35:1041–1052. doi:10.1139/t98-060

    Article  Google Scholar 

  • Singh D, Shah PH (2005) Generalized Archie’s law for estimation of soil electrical conductivity. J ASTM 2:1–20

    Article  Google Scholar 

  • Sorensen JA, Glass GE (1987) Ion and temperature dependence of electrical conductance for natural waters. Anal Chem 59:1594–1597

    Article  Google Scholar 

  • Sperazza M, Moore JN, Hendrix MS (2004) High-resolution particle size analysis of naturally occurring very fine-grained sediment through laser diffractometry. J Sediment Res 74:736–743

    Article  Google Scholar 

  • Tallin J, Pufahl D, Barbour S (1990) Waste management schemes of potash mines in Saskatchewan. Can J Civil Eng 17:528–542

    Article  Google Scholar 

  • Tran LT, Larsen F, Pham NQ, Christiansen AV, Tran N, Vu HV, Tran LV, Hoang HV, Hinsby K (2012) Origin and extent of fresh groundwater, salty paleowaters and recent saltwater intrusions in Red River flood plain aquifers, Vietnam. Hydrogeol J 20:1295–1313

    Article  Google Scholar 

  • van der Kamp G, Hayashi M (2009) Groundwater-wetland ecosystem interaction in the semiarid glaciated plains of North America. Hydrogeol J 17:203–214

    Article  Google Scholar 

  • Vidic RD, Brantley SL, Vandenbossche JM, Yoxtheimer D, Abad JD (2013) Impact of shale gas development on regional water quality. Science 340. doi:10.1126/science.1235009

  • Waxman M, Smits L (1968) Electrical conductivities in oil-bearing shaly sands. Soc Pet Eng J 8:107–122

    Article  Google Scholar 

  • Williams B, Hoey D (1987) The use of electromagnetic induction to detect the spatial variability of the salt and clay contents of soils. Soil Res 25:21–27. doi:10.1071/SR9870021

    Article  Google Scholar 

  • Zume JT, Tarhule A, Christenson S (2006) Subsurface imaging of an abandoned solid waste landfill site in Norman, Oklahoma. Groundwater Monit Rem 26:62–69

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by the Saskatchewan Potash Producers Association and an NSERC IRC (Grant number 184573). Adrienne Bangsund and Erin Schmeling provided assistance with sample collection and laboratory analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah A. Bourke.

Electronic supplementary material

ESM 1

(PDF 932 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourke, S.A., Hermann, K.J. & Hendry, M.J. High-resolution vertical profiles of groundwater electrical conductivity (EC) and chloride from direct-push EC logs. Hydrogeol J 25, 2151–2162 (2017). https://doi.org/10.1007/s10040-017-1587-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-017-1587-z

Keywords

Navigation