Skip to main content
Log in

Decorated granular crystal as filter of low-frequency ultrasonic signals

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We numerically study uncompressed granular crystals excited by sinusoidal signals at 1–100 kHz. A simple system such as two beads in a line reveals that for a fixed driven frequency, incident signals can be transmitted or filtered depending on the driving amplitude. We show that using square tapered crystals with decoration it becomes possible to enhance the low frequency filtration properties of granular systems. In addition to filtration, we find that \(80\%\) or more of the input force is attenuated using a crystal thickness of 4 grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Davis, H.: Biological and psychological effects of ultrasonics. J. Acoust. Soc. Am. 20, 605 (1948)

    Article  ADS  Google Scholar 

  2. Dickson, E.D.D.: Some effects of intense sound and ultrasound on the ear. Proc. R. Soc. Med. 46, 139 (1952)

    Google Scholar 

  3. Smagowska, B.: Effects of ultrasonic noise on the human body-a bibliographic review. Int. J. Occup. Saf. Ergon. 19(2), 195 (2013)

    Article  Google Scholar 

  4. Altmann, J.: Acoustic weapons—a prospective assessment. Sci. Global Secur. 9, 165 (2001)

    Article  ADS  Google Scholar 

  5. Feril Jr., L.B., Kondo, T.: Biological effects of low intensity ultrasound: the mechanism involved, and its implications on therapy and on biosafety of ultrasound. J. Radiat. Res. 45(4), 479 (2004)

    Article  ADS  Google Scholar 

  6. Rokhina, E.V., Lens, P., Virkutyte, J.: Low-frequency ultrasound in biotechnology: state of the art. Trends Biotechnol. 27(5), 298 (2009)

    Article  Google Scholar 

  7. Nesterenko, V.F.: Dynamics of Heterogeneous Materials. Springer, New York (2001)

    Book  Google Scholar 

  8. Sen, S., Hong, J., Bang, J., Avalos, E.: RobertDoney, solitary waves in the granular chain. Phys. Rep. 462, 21 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. Tiwari, M., Mohan, T.R.K., Sen, S.: Impact decimation using alignment of granular spheres. Int. J. Mod. Phys. B 31, 1742012 (2017)

    Article  ADS  Google Scholar 

  10. Rosas, A., Lindenberg, K.: Pulse propagation in granular chains: the binary collision approximation. Int. J. Mod. Phys. B 31, 1742016 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  11. Gilcrist, L.E., Baker, G.S., Sen, S.: Preferred frequencies for three unconsolidated earth materials. Appl. Phys. Lett. 91, 254103 (2007)

    Article  ADS  Google Scholar 

  12. Brunet, T., Jia, X., Mills, P.: Mechanisms for acoustic absorption in dry and weakly wet granular media. Phys. Rev. Lett. 101, 138001 (2008)

    Article  ADS  Google Scholar 

  13. Jayaprakash, K.R., Starosvetsky, Y., Vakakis, A.F., Peeters, M., Kerschen, G.: Nonlinear normal modes and band zones in granular chains with no pre-compression. Nonlinear Dyn. 63, 359 (2011)

    Article  MathSciNet  Google Scholar 

  14. Lydon, J., Jayaprakash, K.R., Ngo, D., Starosvetsky, Y., Vakakis, A.F., Daraio, C.: Frequency bands of strongly nonlinear homogeneous granular systems. Phys. Rev. E 88, 012206 (2013)

    Article  ADS  Google Scholar 

  15. Lydon, J., Theocharis, G., Daraio, C.: Nonlinear resonances and energy transfer in finite granular chains. Phys. Rev. E 91, 023208 (2015)

    Article  ADS  Google Scholar 

  16. Hutchins, D.A., Yang, J., Akanji, O., Thomas, P.J., Davies, L.A.J., Freear, S., Harput, S., Saffari, N., Gelat, P.: Evolution of ultrasonic impulses in chains of spheres using resonant excitation. Europhys. Lett. 109, 54002 (2015)

    Article  ADS  Google Scholar 

  17. Hutchins, D.A., Yang, J., Akanji, O., Thomas, P.J., Davis, L.A.J., Freear, S., Harput, S., Saffari, N., Gelat, P.: Ultrasonic propagation in finite-length granular chains. Ultrasonics 69, 215 (2016)

    Article  Google Scholar 

  18. Devaux, T., Tournat, V., Richoux, O., Pagneux, V.: Self-demodulation of elastic waves in a one-dimensional granular chain. Phys. Rev. E 70, 056603 (2004)

    Article  Google Scholar 

  19. Devaux, T., Tournat, V., Richoux, O., Pagneux, V.: Asymmetric acoustic propagation of wave packets via the self-demodulation effect. Phys. Rev. Lett. 115, 234301 (2015)

    Article  ADS  Google Scholar 

  20. Espíndola, D., Galaz, B., Melo, F.: Ultrasound induces aging in granular materials. Phys. Rev. Lett. 109, 158301 (2012)

    Article  ADS  Google Scholar 

  21. Szelengowicz, I., Kevrekidis, P.G., Daraio, C.: Wave propagation in square granular crystals with spherical interstitial intruders. Phys. Rev. E 86, 061306 (2012)

    Article  ADS  Google Scholar 

  22. Szelengowicz, I., Hasan, M.A., Starosvetsky, Y., Vakakis, A., Daraio, C.: Energy equipartition in two-dimensional granular systems with spherical intruders. Phys. Rev. E 87, 032204 (2013)

    Article  ADS  Google Scholar 

  23. Job, S., Santibanez, F., Tapia, F., Melo, F.: Wave localization in strongly nonlinear Hertzian chains with mass defect. Phys. Rev. E 80, 025602(R) (2009)

    Article  ADS  Google Scholar 

  24. Manciu, M., Sen, S., Hurd, A.J.: TImpulse propagation in dissipative and disordered chains with power-law repulsive potentials. Phys. D 157, 226 (2001)

    Article  Google Scholar 

  25. Machado, L.P.S., Sen, S.: Controlled energy dispersion in 2D decorated granular crystals. Phys. Rev. E 98, 032907 (2018)

    Article  ADS  Google Scholar 

  26. Machado, L.P.S., Rosas, A., Lindenberg, K.: Momentum and energy propagation in tapered granular chains. Granul. Matter 15, 735 (2013)

    Article  Google Scholar 

  27. Machado, L.P.S., Rosas, A., Lindenberg, K.: A quasi-unidimensional granular chain to attenuate impact. Eur. Phys. J. E 37, 119 (2014)

    Article  Google Scholar 

  28. Charalampidis, E., Li, F., Chong, C., Yang, J., Kevrekidis, P.G.: Time-periodic solutions of driven-damped trimer granular crystals. Math. Probl. Eng. 2015, 15 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the UFPA. L.M. also thanks the Department of Physics of UB for hospitality during his visit. S.S. was a recipient of a Fulbright-Nehru Academic and Professional Excellence Fellowship during the performance of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Paulo Silveira Machado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, L.P.S., Sen, S. Decorated granular crystal as filter of low-frequency ultrasonic signals. Granular Matter 22, 7 (2020). https://doi.org/10.1007/s10035-019-0977-4

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0977-4

Keywords

Navigation