Granular Matter

, 22:7 | Cite as

Decorated granular crystal as filter of low-frequency ultrasonic signals

  • Luís Paulo Silveira MachadoEmail author
  • Surajit Sen
Original Paper


We numerically study uncompressed granular crystals excited by sinusoidal signals at 1–100 kHz. A simple system such as two beads in a line reveals that for a fixed driven frequency, incident signals can be transmitted or filtered depending on the driving amplitude. We show that using square tapered crystals with decoration it becomes possible to enhance the low frequency filtration properties of granular systems. In addition to filtration, we find that \(80\%\) or more of the input force is attenuated using a crystal thickness of 4 grains.


Ultrasonic signals Filtration Transmission Granular filter Decorated crystal 



The authors gratefully acknowledge financial support from the UFPA. L.M. also thanks the Department of Physics of UB for hospitality during his visit. S.S. was a recipient of a Fulbright-Nehru Academic and Professional Excellence Fellowship during the performance of this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Davis, H.: Biological and psychological effects of ultrasonics. J. Acoust. Soc. Am. 20, 605 (1948)ADSCrossRefGoogle Scholar
  2. 2.
    Dickson, E.D.D.: Some effects of intense sound and ultrasound on the ear. Proc. R. Soc. Med. 46, 139 (1952)Google Scholar
  3. 3.
    Smagowska, B.: Effects of ultrasonic noise on the human body-a bibliographic review. Int. J. Occup. Saf. Ergon. 19(2), 195 (2013)CrossRefGoogle Scholar
  4. 4.
    Altmann, J.: Acoustic weapons—a prospective assessment. Sci. Global Secur. 9, 165 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Feril Jr., L.B., Kondo, T.: Biological effects of low intensity ultrasound: the mechanism involved, and its implications on therapy and on biosafety of ultrasound. J. Radiat. Res. 45(4), 479 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Rokhina, E.V., Lens, P., Virkutyte, J.: Low-frequency ultrasound in biotechnology: state of the art. Trends Biotechnol. 27(5), 298 (2009)CrossRefGoogle Scholar
  7. 7.
    Nesterenko, V.F.: Dynamics of Heterogeneous Materials. Springer, New York (2001)CrossRefGoogle Scholar
  8. 8.
    Sen, S., Hong, J., Bang, J., Avalos, E.: RobertDoney, solitary waves in the granular chain. Phys. Rep. 462, 21 (2008)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Tiwari, M., Mohan, T.R.K., Sen, S.: Impact decimation using alignment of granular spheres. Int. J. Mod. Phys. B 31, 1742012 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    Rosas, A., Lindenberg, K.: Pulse propagation in granular chains: the binary collision approximation. Int. J. Mod. Phys. B 31, 1742016 (2017)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Gilcrist, L.E., Baker, G.S., Sen, S.: Preferred frequencies for three unconsolidated earth materials. Appl. Phys. Lett. 91, 254103 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Brunet, T., Jia, X., Mills, P.: Mechanisms for acoustic absorption in dry and weakly wet granular media. Phys. Rev. Lett. 101, 138001 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Jayaprakash, K.R., Starosvetsky, Y., Vakakis, A.F., Peeters, M., Kerschen, G.: Nonlinear normal modes and band zones in granular chains with no pre-compression. Nonlinear Dyn. 63, 359 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lydon, J., Jayaprakash, K.R., Ngo, D., Starosvetsky, Y., Vakakis, A.F., Daraio, C.: Frequency bands of strongly nonlinear homogeneous granular systems. Phys. Rev. E 88, 012206 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Lydon, J., Theocharis, G., Daraio, C.: Nonlinear resonances and energy transfer in finite granular chains. Phys. Rev. E 91, 023208 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Hutchins, D.A., Yang, J., Akanji, O., Thomas, P.J., Davies, L.A.J., Freear, S., Harput, S., Saffari, N., Gelat, P.: Evolution of ultrasonic impulses in chains of spheres using resonant excitation. Europhys. Lett. 109, 54002 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Hutchins, D.A., Yang, J., Akanji, O., Thomas, P.J., Davis, L.A.J., Freear, S., Harput, S., Saffari, N., Gelat, P.: Ultrasonic propagation in finite-length granular chains. Ultrasonics 69, 215 (2016)CrossRefGoogle Scholar
  18. 18.
    Devaux, T., Tournat, V., Richoux, O., Pagneux, V.: Self-demodulation of elastic waves in a one-dimensional granular chain. Phys. Rev. E 70, 056603 (2004)CrossRefGoogle Scholar
  19. 19.
    Devaux, T., Tournat, V., Richoux, O., Pagneux, V.: Asymmetric acoustic propagation of wave packets via the self-demodulation effect. Phys. Rev. Lett. 115, 234301 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Espíndola, D., Galaz, B., Melo, F.: Ultrasound induces aging in granular materials. Phys. Rev. Lett. 109, 158301 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Szelengowicz, I., Kevrekidis, P.G., Daraio, C.: Wave propagation in square granular crystals with spherical interstitial intruders. Phys. Rev. E 86, 061306 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Szelengowicz, I., Hasan, M.A., Starosvetsky, Y., Vakakis, A., Daraio, C.: Energy equipartition in two-dimensional granular systems with spherical intruders. Phys. Rev. E 87, 032204 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Job, S., Santibanez, F., Tapia, F., Melo, F.: Wave localization in strongly nonlinear Hertzian chains with mass defect. Phys. Rev. E 80, 025602(R) (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Manciu, M., Sen, S., Hurd, A.J.: TImpulse propagation in dissipative and disordered chains with power-law repulsive potentials. Phys. D 157, 226 (2001)CrossRefGoogle Scholar
  25. 25.
    Machado, L.P.S., Sen, S.: Controlled energy dispersion in 2D decorated granular crystals. Phys. Rev. E 98, 032907 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    Machado, L.P.S., Rosas, A., Lindenberg, K.: Momentum and energy propagation in tapered granular chains. Granul. Matter 15, 735 (2013)CrossRefGoogle Scholar
  27. 27.
    Machado, L.P.S., Rosas, A., Lindenberg, K.: A quasi-unidimensional granular chain to attenuate impact. Eur. Phys. J. E 37, 119 (2014)CrossRefGoogle Scholar
  28. 28.
    Charalampidis, E., Li, F., Chong, C., Yang, J., Kevrekidis, P.G.: Time-periodic solutions of driven-damped trimer granular crystals. Math. Probl. Eng. 2015, 15 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Universidade Federal do ParáBelémBrazil
  2. 2.Department of PhysicsState University of New YorkBuffaloUSA

Personalised recommendations